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Abstract: Using a basic approach to DNA mathematical models published by 
N.Kovaleva, L.Manevich in 2005 and 2007, and investigated corresponding 
linearized model, we consider the double DNA (dDNA) as a system with 
elements with hereditary properties as well as a fractional order system to obtain 
main chain subsystems of the double DNA. Analytical expressions of the eigen 
circular frequencies for the homogeneous linerized model of the dDNA chain 
helix are used to obtain corresponding eigen fractional order creep vibration 
modes. We identified two sets of eigen normal coordinates of the DNA fractional 
order chain helix for separation of the system into two uncoupled fractional order 
chains. The visualization of the eigen fractional order creep vibration modes of 
the DNA fractional order chain helix is presented. The results open possibilities 
for different approach to explaining the behavior of the double chain DNA and of 
transfer of oscillatory signals trough the chains. Under certain sequences it is 
possible that oscillatory signal is transferred only through one chain. This may 
correspond to base pair order and translation process in complementary fractional 
order chains of DNA double helix in a living cell. 
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1. Introduction 

 A number of mechanical models of the DNA double helix have been proposed till today (see 

Fig. 1 and Refs. [1-6], [15-16], [17-10], [22-23]). Different models are focusing on different aspects 

of the DNA molecule  (biological, physical and chemical processes in which DNA is involved). In a 

double DNA helix a localized excitation (breather) can exist which corresponds to predominant 

rotation of one chain and small perturbation of second chain using coarse-grained model of DNA 

double helix. In this model, each nucleotide is represented by three beads with interaction sites 

corresponding to a phosphate group, the group of sugar ring, and the base (see Ref. [16]). 



 N. Kovaleva and L. Manevich [15] point out that solitons and breathers play a functional role in 

DNA chains. In a model, the DNA backbone is reduced to the polymeric structure and the base is 

covalently linked to the center of sugar ring group, thus a DNA molecule with N nucleotides 

corresponds to 3N interaction centers. Starting from a coarse-grained off-lattice model of DNA and 

using cylindrical coordinates, authors derive simplified continuum equations corresponding to 

vicinities of gap frequencies in the spectrum of linearized equations of motion. It is shown that 

obtained nonlinear continuum equations describing modulations of normal modes, admit spatially 

localized solitons, which can be identified with breathers. Authors formulated conditions of the 

breathers existence and estimate their characteristic parameters. The relationship between derived 

model and more simple and widely used models is discussed. The analytical results are compared 

with the data of a numerical study of discrete equations of motion (See Figure 1.b*). 

                            
a*       b*      c*  

 Figure 2. a* “Toy mechanical” model of DNA [6] by Jeff Gore, Zev Bryant, Marcelo (2006) 
b* The model scheme of a double helix on six coarse-grained particles [11]; c*  Fragment of the 
DNA double chain consisting of three АТ base pairs.   
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Figure 2. Double DNK fractional order (or/and hereditary)  chain helix in the form of  multipendulum model with 
free(a*) and (fixed (b*)  ends 

 

Ref. [16] by N.Kovaleva, L.Manevich (2005)) presented at DSTA’05, presented the 

simplest model describing opening of DNA double helix. Corresponding differential equations are 

solved analytically using multiple-scale expansions after transition to complex variables. Obtained 

solution corresponds to localized torsional nonlinear excitation – breather. Stability of breather is also 

investigated. In the Reference [12] authors listed a choice of different models of two coupled 

homogeneous DNA chain vibrations proposed in the literature. By using as a basis the approach to 



DNA mathematical models published by N. Kovaleva, L. Manevich in 2005 and 2007, authors 

consider the linearized model to obtain main chain subsystems of the double DNA helix.  Analytical 

expressions of the eigen circular frequencies for the homogeneous model of the double DNA chain 

helix are obtained, as well as corresponding eigen vibration modes and possibilities of the appearance 

of resonant regimes, as well as dynamical absorption under the external forced excitations are 

considered. Two sets of eigen normal coordinates of the double DNA chain helix for separation of the 

system into two uncoupled chains are identified. This may correspond to base pair order in 

complementary chains of DNA double helix in a living cell. Expressions for the kinetic and potential 

energy as well as energy interaction between chains in the double DNA chain helix are obtained and 

analyzed for a linearized model [14]. By obtained expressions we concluded that there is no energy 

interaction between eigen main chains of the double DNA chain helix. Using a basic approach to 

DNA mathematical models published by N.Kovaleva, L.Manevich in 2005 and 2007, and 

investigated corresponding linearized model [12], we consider the fractional order model to obtain 

main chain subsystems of the double DNA fractional order chain helix [13]. Analytical expressions 

of the eigen circular frequencies for the homogeneous linerized model of the double DNA chain helix 

are used to obtain corresponding eigen fractional order creep vibration modes. Two sets of eigen 

normal coordinates of the double DNA fractional order chain helix for separation of the system into 

two uncoupled fractional order chains are identified. The visualization of the eigen fractional order 

creep vibration modes of the double DNA fractional order chain helix is presented. The results open 

the possibilities for different approach to explaining the behavior of the double chain DNA and of 

transfer of oscillatory signals trough the chains. Under certain sequences it is possible that oscillatory 

signal is transferred only through one chain. This may correspond to base pair order in 

complementary fractional order chains of DNA double helix in a living cell. These data contribute to 

better understanding of biomechanical events of DNA transcription that occur parallel with 

biochemical processes.  

2. Linearized model and sets of the eigen main chains of the double DNA chain helix 

 Authors deal with the planar DNA model in which the chains of the macromolecule form two 

parallel straight lines placed at a distance h  from each other, and the bases can make only rotation 

motions around their own chain, being all the time perpendicular to it. Authors accepted as 

generalized (independent) coordinates 
1,kϕ  that are the angular displacement of the k -th base of the 

first chain, and as generalized (independent) coordinates 
2,kϕ is the angular displacement of the k -the 

base of the second chain. Here 
1kJ ,

 is the axial moment of mass inertia of the k -th base of the first 



chain; 2,kJ  is the axial moment of mass inertia of the k -th base of the second chains (for detail see 

Refs.[15-16]). Parameter ikK , , 2,1=i characterizes the potential energy of interaction of the k -th 

base with the ( 1+k )-th one along the i -th chain. There are different estimations of rigidity. For the 

calculation we use the most appropriate value that is close to ]/[106 3
, molkJKK ik ×== /. By using 

the following notations (see Refs. [12-14]): 
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the corresponding analytical expressions of the square of ω  - eigen circular frequencies of vibration 

modes of separate main chains of linearized double DNA chain helix model, obtained by 

trigonometric method (see Refs. [20], [8], [10-14])  are:   
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where sϕ  and rϑ , nrs ,....,3,2,1, =  depend of the boundary chain conditions. 

3. Standard light fractional order creep and hereditary element 

Light standard coupling element of negligible mass in the form of axially stressed rod 

without bending, and which has the ability to resist deformation under static and dynamic conditions. 

Light standard fractional order creep element for which the constitutive stress-strain relation for the 

restitution force as the function of element elongation is given by fractional order derivatives in the 

form  
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where [ ]•σ
tD  is operator of the thσ  derivative with respect to time t in the following form: 
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where αcc,  are rigidity coefficients – momentary and prolonged one,  and α  a rational number 

between 0 and 1, 10 <<σ ; P is the force appearing in the element; x  is a rheological 

coordinate, usually presented  as deformation or relative displacement. Light standard hereditary 

element for which the constitutive stress-strain relation for the restitution force as the function of 

element elongation is given by integral member in the form  
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(for detail see Monograph [7] and Ref. [8]) and  
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integral operator.   

3. The double DNA fractional order chain helix model on the basis of the Kovaleva-Manevich‘s 
DNA model 

 For the double DNA fractional order chain model on the basis of the linearized Kovaleva-

Manevich‘s DNA model (see Refs. [16], [12], [13], [14]), we accept the two chains as they are 

presented in Figure 2. in the form of the double chain fractional order system containing two coupled 

multi pendulum subsystems, with corresponding material particles of the corresponding 

multipendulum chains, that are each two inter coupled by one standard light fractional order element 

(see Refs. [8], [9] and [13]).  

Then we can use a system of coupled linear differential equations (see Refs. [16], [12], 

[13], [14]) extended by members containing fractional order differential operators in the form (3)-(4). 

Then we can write a corresponding system of the fractional order differential coupled equations for 

the homogeneous double DNA fractional order chain helix in the form: 
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as our intention is to use previous double DNA fractional order chain model for the case of the 

homogeneous system parameters we take into account that: σ,,1kK = σ,2,kK =K. and σαβ ,K = 

σαβ ,K , where 
K

K σαβ
σκ

,= . By using change of the generalized coordinates 1,kϕ  and 2,kϕ  for 

k -th bases of both chains in the DNA model into following new kξ  and kη  by the following 



dependence: 2,1, kkk ϕϕξ −=  and 2,1, kkk ϕϕη += , previous system of differential equations 

(6) obtains the following form: 
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 First series (7) of the previous system of fractional order differential equations are decoupled and 

independent with relations of the second series  (8) of the fractional order differential equations. Then 

we can conclude that new coordinates of kξ  and kη  are main coordinates of double DNA fractional 

order chains and that we obtain two fictive decoupled independent eigen fractional order, different, 

chains of the double DNA fractional order chain helix model. This is the first fundamental conclusion 

as an important property of the fractional order homogeneous model of vibrations in a double DNA 

fractional order homogeneous helix.   

Systems of differential equations (7)-(8) contains two separate subsystems of fractional 

order differential equations expressed by coordinates of kξ  and kη  which are main coordinates of 

the eigen main chains of a double DNA fractional order chain helix and separate DNA fractional 

order model into two independent fractional order chains.  

4. The double DNA hereditary chain helix model on the basis of the Kovaleva-Manevich‘s DNA 
model 

For the double DNA hereditary chain model on the basis of the linearized Kovaleva-Manevich‘s 

DNA model (see Refs. [16], [12], [13], [14]), we accept the two chains as they are presented in 

Figure 2. in the form of the double chain fractional order system containing two coupled multi 

pendulum subsystem, in with corresponding material particles of the corresponding multipendulum 

chains are each two inter coupled by one standard light hereditary element (see Refs. [7] and [8]).  

Then we can use a system of coupled linear differential equations (see Refs. [16], [12], 

[13], [14]) extended by members containing integral operators in the form (5)-(6). Then we can write 

a corresponding system of coupled integro-differential equations for the homogeneous double DNA 

hereditary chain helix in the form: 
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as our intention is to use previous double DNA hereditary chain model for the case of the 

homogeneous system parameters we take into account that: σ,,1kK = σ,2,kK =K. By using change 

of the generalized coordinates 1,kϕ  and 2,kϕ  for k -th bases of both chains in the DNA model into 

following new kξ  and kη  by the following dependence: 2,1, kkk ϕϕξ −=  and  

2,1, kkk ϕϕη += , previous system of differential equations (6) obtains the following form: 
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 First series (10) of the previous system of integro-differential equations is decoupled and 

independent in relation to the second series  (11) of integro-differential equations. Then we can 

conclude that new coordinates of kξ  and kη  are main coordinates of double DNA hereditary chains 

and that we obtain two fictive decoupled eigen hereditary, different, chains of the double DNA 

hereditary chain helix model. This is the second fundamental conclusion as an important property of 

the hereditary order homogeneous model of vibrations in a double DNA hereditary homogeneous 

helix.   

Systems of integro-differential equations (10)-(11) contain two separate subsystems of 

integro-differential equations expressed by coordinates of kξ  and kη  which are main coordinates of 

eigen main chains of a double DNA fractional order chain helix and separate DNA hereditary model 

into two independent hereditary chains.  

We can see that there are full mathematical analogy and phenomenological mapping between 

two models: a double DNA fractional order chain helix model and a double DNA hereditary chain 

helix.  

5. The main partial fractional order/hereditary oscillator of a double DNA fractional 
order/hereditary chain helix model  

 By using system the (7)-(8) of uncoupled fractional order differential equations and analogous 

system (10)-(11) of uncoupled integro-differential equations as corresponding systems of eigen main 

chains of the corresponding models of double DNA fractional order/hereditary chain helix vibrations 



can obtain corresponding main coordinates s,ςζ  and r,ηζ , nsr ,...,3,2,1, = and corresponding 

double systems of the main partial fractional order oscillators described by the following uncoupled 

fractional order differential equations containing each only  one normal coordinate s,ςζ  and r,ηζ : 
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and corresponding double systems of the main partial hereditary oscillators described by the 

following uncoupled integro-differential equations containing each only  one normal coordinate s,ςζ  

and r,ηζ : 
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In both of the previous systems *12)-(13) and (13)-(140 square of the eigen frequencies, 2
,sξω  and 

2
,rηω  of the linearized systems are defined by expression s (2) and it is easy to obtain corresponding 

expressions for the 2
,sαξω  and 2

,rαηω  in the following form: 

4. Concluding remarks   

 In the end, we can conclude that new coordinates of kξ  and kη  composed by generalized 

coordinates in the way 
2,1, kkk ϕϕξ −=  and 

2,1, kkk ϕϕη +=  are main coordinates eigen main chains 

of the double DNA fractional order/hereditary chain helix and that it is possible to obtain two fictive 

decoupled and separated eigen single fractional order chains of the double DNA fractional 

order/hereditary homogeneous chain helix model. This is the first fundamental conclusion and an 

important property of the fractional order/hereditary model of vibrations in a double DNA fractional 

order/hereditary helix. Considered as a fractional order/hereditary mechanical system, DNA molecule 

as a double fractional order/hereditary helix has its eigen fractional order/hereditary vibration modes 

and that is its characteristic. Mathematically, it is possible to decuple it into two chains with their 

eigen modes closest to the eigen modes of the linearized models of main chains with corresponding 

sets of the circular frequencies which are different. This may correspond to different chemical 

structure (the order of base pairs) of the complementary chains of DNA. We are free to propose that 

every specific set of base pair order has its eigen circular frequencies and it changes when DNA 



chains are coupled in the system of double helix. DNA as a double helix in a living cell can be 

considered as nonlinear system but under certain condition its behavior can be describe by linear 

dynamics.  

Then, analytical expressions of the square of 2
,sξω  and 2

,rηω   - eigen circular frequencies of 

the vibration modes of the separate chains of the homogeneous double DNA chain helix are obtained. 

By using these results it is easy to consider these values of the system 2
,sξω  and 2

,rηω    - eigen 

circular frequencies of free vibrations as series of resonant frequencies under external multi 

frequencies excitations, and also possibilities for the appearance of dynamical absorbtion 

phenomena and find explanation with real processes in the homogeneous double DNA ideal-

elastic/fractional order/ hereditary chain helix. Next consideration is focused on the small 

nonlinearity in the double DNA chain helix vibrations and rare nonlinear phenomena such as resonant 

jumps and energy interactions between nonlinear modes.  
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