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Dynamical stability of the weakly nonharmonic propeller-shaped planar Brownian rotator
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Dynamical stability is a prerequisite for control and functioning of desired nanomachines. We utilize the
Caldeira-Leggett master equation to investigate dynamical stability of molecular cogwheels modeled as a rigid,
propeller-shaped planar rotator. To match certain expected realistic physical situations, we consider a weakly
nonharmonic external potential for the rotator. Two methods for investigating stability are used. First, we
employ a quantum-mechanical counterpart of the so-called “first passage time” method. Second, we investigate
time dependence of the standard deviation of the rotator for both the angle and angular momentum quantum
observables. A perturbationlike procedure is introduced and implemented to provide the closed set of differential
equations for the moments. Extensive analysis is performed for different combinations of the values of system
parameters. The two methods are, in a sense, mutually complementary. Appropriate for the short time behavior,
the first passage time exhibits a numerically relevant dependence only on the damping factor as well as on the
rotator size. However, the standard deviations for both the angle and angular momentum observables exhibit
strong dependence on the parameter values for both short and long time intervals. Contrary to our expectations,
the time decrease of the standard deviations is found for certain parameter regimes. In addition, for certain
parameter regimes nonmonotonic dependence on the rotator size is observed for the standard deviations and
for the damping of the oscillation amplitude. Hence, nonfulfillment of the classical expectation that the size of
the rotator can be reduced to the inertia of the rotator. In effect, the task of designing the desired protocols for
the proper control of the molecular rotations becomes an optimization problem that requires further technical
elaboration.
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I. INTRODUCTION

Functional parts of the realistic and desired nanomachines
have a finite spatial size and definite geometrical shape as
well as exposed to environmental influence [1–4]. A desired
function of those parts determines their size and geometry
(geometrical shape), which, in turn, determines the environ-
mental influence. This poses a challenge for both theoret-
ical studies and experimental investigations of the realistic
nanoscale systems. Particularly, description of nanosized ro-
tating molecules monitored by the many-particle environment
“cannot be reduced to any of the previously known impurity
problems of condensed matter physics” [5].

There is not yet a general quantum theory to link dynamics
with the system’s spatial size and geometry. Certain simplified
models (such as, e.g., the sphere- or ellipsoid- or a rodlike
shaped rotators) [6,7] are typically considered to have rota-
tional symmetry in regard to the system of interest as well
as the homogeneous environment. The requirement of rota-
tional symmetry justifies, for some models, construction of
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the effective, rotationally symmetric interactions or external
potentials for the rotator system [8]. The related quantum
master equations are typically assumed or constructed to be
Markovian [8–11], that is, of the Lindblad form [12,13].

For larger molecular species with high temperature of
the environment it is expected that the classical theory may
work well. Therefore, one may ask whether the quantum-
mechanical description may be of any practical use. Nev-
ertheless, there are observable effects such as the so-called
barriers to rotation that, in some cases, require the quantum-
mechanical description [2]. Certain quantum corrections are
found and deeply investigated for some analogous classical
models [14–18]. In certain scenarios, the individually negli-
gible quantum-mechanical contributions may accumulate to
such extent that the classical theory is of limited use [19]. To
this end, the standard classical theory of the Brownian rotator
does not support the rotational symmetry [2]. For example,
the external electric field applied to dipolar molecules as well
as the molecular rotators resting on the solid surface may
introduce (in the zeroth approximation) the external harmonic
field for the rotator of the form Iω2ϕ2/2 for a molecule with
the moment of inertia I , the circular frequency ω and the
azimuthal angle of rotation ϕ [2]. For such scenarios, the
rotational 2π -symmetry is not applicable. Then, the standard
quantization procedure [19,20] distinguishes the Caldeira-
Leggett master equation [12,21] as a possibly useful model
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for the realistic physical situations. A semiclassical master
equation for the Brownian particle’s Wigner function appears
as an alternative method that is equipped with the powerful
calculation tools [15–18].

Analysis of the rotator’s size and shape can be performed
particularly for the propellerlike molecular rotators in the con-
text of certain plausible (often used) assumptions regarding
the rotator’s interaction with the thermal bath [19]. Then the
rotator’s size can be introduced by the linear dependence of
both the moment of inertia and the strength of interaction (and
therefore of the damping factor) on the number N of the blades
of the propeller rotator [19]. Those linearities do not appear
for the general case, e.g., for the mutually dependent blades
[in which case the local environments may also become mutu-
ally dependent]. Dynamical stability has been investigated for
the free rotator and rotator in the external harmonic potential
[14]. The absence of simple rules or recipes for utilizing the
rotator stability is acknowledged [19].

Proceeding now we utilize the Caldeira-Leggett master
equation to investigate stability of a quantum rotator, which
is placed in the external potential of the form V (ϕ̂) =
Iω2ϕ̂2/2 − bϕ̂3 with the small real parameter b > 0. Our task
is to investigate dynamical stability of the rotator of the size
(the number of blades) N with the average moment of inertia
I◦ and the damping factor γ◦. Quantum mechanical consis-
tency of the model that does not account for the problematic
uncertainty relation for the angle and angular momentum ob-
servables allows only small rotations to be considered [22,23].
The physical origin of the cubic term may lie in the external
driving field as well as in the effective intrinsic potential
for the rotator. Otherwise, the use of this kind of potential
can be found in investigations of certain nonlinear dynamical
systems, notably the dynamics of the initial metastable state
(classical or quantum) regarding, e.g., the so-called “noise
enhanced stability” effect [24–27], nonlinear friction models
[28], decay of unstable states [29], stabilization of volatility
in financial market [30], and a model of certain chemical
reactions [15].

We do not restrict our considerations to the original [21]
assumption of the weak coupling and the high temperature
of the environment. Rather, we regard the Caldeira-Leggett
master equation in the phenomenological sense as emphasized
in Ref. [31].

The various approaches are developed to describe decay
of unstable states. Notably, the escape from a metastable
state (the “Kramers problem”) and dynamics of the standard
deviations for the relevant variables are of particular interest.
Escape from a metastable state (from a potential well) can be
described in the mutually nonequivalent ways via estimations
of the escape rate [14,32] (and the references therein), on the
one hand, and the first passage time [29] (and the references
therein), on the other. Physically, the first method considers
possible returns of the Brownian particle into the well [14]
that includes the semiclassical treatment by using the Wigner
function master equation [15–18], while the first passage time
regards when the variable of interest attains for the first time a
threshold value without return to the well [24–30,32–36].

Investigation of the rotation stability in this paper, by
utilizing the Caldeira-Leggett master equation as empha-
sized above, is twofold. First, we introduce and use a
quantum-mechanical counterpart of the first-passage time
(FPT) method. Second, we use the standard method [19] of
quantifying stability by the standard deviations of the angle
and angular momentum observables. Predictions of the two
methods are mutually consistent, e.g., Ref. [35]: the smaller
the FPT the faster (and larger) the increase of the related
standard deviation.

Those methods require the knowledge of the first and the
second moments of the relevant observables. With the use
of the Caldeira-Leggett master equation, we derive analytical
expressions for the differential equations for the moments
of both the angle of rotation ϕ̂ and the angular momentum
L̂z quantum observables. We obtain an infinite set of the
coupled first-order differential equations for the moments.
Solving an infinite set of equations is an open, poorly-solved
mathematical problem even for the commutative variables
[37–39]. To this end, different methods are used for obtaining
the approximate/plausible solutions that are considered on
the case-to-case basis. Our solution to this problem is pertur-
bative, without the use of the standard quantum-mechanical
perturbation methods. That is, we assume the small real
constant b. Then, neglecting the terms of the order of b2, we
obtain a closed set of differential equations.

Solutions to the differential equations are found partially
in the analytic form. An extensive quantitative analysis of
the solutions is performed for the different parameter ranges
and dynamical regimes. The findings reveal a physically rich
behavior that does not provide simple recipes or straight-
forward protocols for utilizing the rotator stability. Rather,
the combinations of the different stability criteria should be
separately considered to provide optimal conditions for the
rotator dynamics.

The structure of this paper is as follows: In Sec. II we
present details regarding the physical model. The general
methodological details that include description of our method
for obtaining the closed set(s) of the differential equations for
the moments of the angle and angular momentum observables
are presented in Sec. III; in the Appendix we provide the
complete matrix for the system of the differential equations
for the moments up to the fourth order. In Sec. IV we in-
troduce and investigate a quantum-mechanical counterpart of
the first passage time, that we dub quantum first-passage-time
(QFPT), for the angle-observable. An emphasis is placed on
the numerical investigation of the QFPT-dependence on the
number of blades of the rotator. In Sec. V, we investigate
dynamics of the standard deviations of both observables. Ex-
tensive analysis of the parameter dependence provides rather
rich physical findings that are briefly commented on in the
respective Secs. IV C and V C. On this basis, a discussion
of the obtained results and the general remarks on the task of
practical utilizing the rotator stability are presented in Sec. VI.
Those remarks distinguish the role of both the small parameter
b as well as of the propeller’s size N . Section VII is our
conclusion.
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II. THE MODEL ASSUMPTIONS

In this paper we adopt the general model and terminology
regarding the propeller-shaped molecular rotators [2] (and the
references therein) that use analogy with the macroscopic
counterparts, which consist of mutually independent “blades”
and their independent local environments. Therefore, the total
moment of inertia of the rotator is the sum of individual-blades
momentums of inertia. Analogously, for independent local
environments, e.g., in the scattering-model of interaction of
the blades with the environmental molecules, the total strength
of interaction with the environment can be modeled as a sum
of the strengths of interaction for the individual blades. Thus,
linear dependence on the number N of the blades follows for
both the moment of inertia as well as for the total damping
factor [19]; cf. Fig. 1 in Ref. [19]. This presents a limitation
of our considerations: For the mutually dependent blades
and/or mutually dependent local environments, the linear
dependence may be expected to be lost.

We consider a weakly cubic potential for the rotator of
the form of V (ϕ) = Iω2ϕ2/2 + bϕ3, where |b| is a small
parameter. Quantization of the angle and angular momentum
observables is a subtle task [22,23]. Particularly, dealing with
the finite rotations or with the 2π rotational symmetry of the
model Hamiltonian requires specific quantization procedure,
cf., e.g., Ref. [8]. Hence, direct quantization of the angle vari-
able adopted in this paper, symbolically ϕ → ϕ̂, allows only
the small rotations to be considered. Then the finite rotations
can be realized only by a (finite) set of small consecutive
rotations.

Realistic rotators are assumed to be placed in some external
fields and/or resting on a solid surface thus producing effec-
tive external field for rotation. Typically, such scenarios can
be modeled by a weakly cubic potential. In such situations,
the free choice of the external field can introduce the N-
independent parameters ω and/or b. However, the intrinsic
potential for rotation [2] introduces dependence of the ro-
tator’s energy on the number of blades. In some cases, the
number N of the blades determines the number n of the local
minimums for the potential, which is typically modeled as the
cosine function of the form W cos(nϕ)/2, with the energy-
barrier height W [2]. While the details in this regard can be
found in the literature, e.g., [2] (and the references therein),
our restriction to small rotations reduces the model-potential
to only one (local) minimum. That is, the assumption of
small rotations practically excludes the transitions between
the minimums and reduces the total potential to only one
such minimum. Now, following the standard wisdom, a local
minimum can be approximated by the quadratic potential,
with the cubic term as the first approximation–which is our
case of study. It is worth emphasizing, that inclusion of the
often regarded quartic and sixtic perturbations [40], (ϕ̂n, n =
4, 6), introduces the changes of the shape of the potential
far from the local minimum and therefore requires a separate
analysis.

Therefore, there is not a general N-dependence of the
parameters ω and b. To compensate for this lack of the general
case, we separately investigate the cases for the different com-
binations of the values for both ω and b. To this end, it is worth
emphasizing that placing b = 0 for the calculations presented

FIG. 1. The cubic potential for the choice of the parameters: ω =
0.1, I◦ = 3, b = −0.01.

in Sec. V returns the results obtained for the pure harmonic
model [19]. Thus, to facilitate the calculations, we formally
consider the parameters ω and b as constants, whose values
are independently varied. Interestingly, the results presented
in the following sections, qualitatively do not change with the
variations of the values of ω and b.

The cubic potential is size-dependent but of the same
form for every number N of the blades. In Fig. 1 we depict
the potential for N = 1 where the local maximum ϕmax is
emphasized.

For every N , 1.5ϕ(N )
max lies on the horizontal axis, while

1.6ϕ(N )
max lies below the horizontal axis in Fig. 1. The choice

of ω = 0.1 and b = −0.01 is used to present the results in
Sec. IV, while the choice ω = 1 and b = −0.001 is used to
present the results in Sec. V.

III. THE TASK: DYNAMICAL STABILITY OF THE
MOLECULAR PROPELLERS

The molecular propellers are recognized as the main can-
didates for the realistic artificial nanoscale cogwheels; their
study is currently rather extensive so we emphasize just a
small sample of the existing literature, e.g., [2–4,41,42] (and
the references therein). While in principle there is no an
estimate of the limitation on the number N of the blades
yet, our considerations are restricted to the maximum N � 10
[19]. The physical units I◦ and γ◦ stand for the moment of
inertia and the damping factor that regard the molecules of
the different chemical species and geometry–the only model
assumption in considering the size of the propeller is the linear
scaling, I = NI◦ and γ = Nγ◦, for the molecule moment of
inertia and the damping factor, respectively [19].

For the one-dimensional (planar) rigid rotator, the Hamil-
tonian reads

Ĥ = L̂2
z

2I
+ V̂ , (1)

where the cubic potential reads: V̂ = Iω2ϕ̂2/2 + bϕ̂3 for the
rotator of the circular frequency ω.

We utilize the standard Caldeira-Leggett master equation
[12,21]:

d ρ̂(t )

dt
= − ı

h̄
[Ĥ, ρ̂(t )] − ıγ

h̄
[ϕ̂, {L̂z, ρ̂(t )}]

− 2Iγ kBT

h̄2 [ϕ̂, [ϕ̂, ρ̂(t )]], (2)
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as the model dynamics for the system; the curly brackets
denote the anticommutator. The only degree of freedom is
the rotational angle ϕ̂ with its conjugate angular momentum
L̂z (for the rotation around the z axis), with the notation as
defined above.

We regard Eq. (2) as a “phenomenological” equation [31],
in the sense of not imposing any restrictions on the values of
the rotator’s frequency ω, the damping factor γ◦ and the bath’s
temperature T . Therefore, our analysis incorporates the usual
under- and over- damped regimes.

In the next two sections we identify and analyze the
quantitative measures of the dynamical stability of the rotator
described by Eqs. (1) and (2). Those measures are based on
the first and second moments for the ϕ̂ and L̂z observables.
After a simple algebra, the linear differential equations for the
moments follow from Eq. (2) in the general form:

d〈Â〉
dt

= −ı

h̄
〈[Â, Ĥ ]〉 + ıγ

h̄
〈{L̂z, [ϕ̂, Â]}〉

− 2Iγ kBT

h̄2 〈[ϕ̂, [ϕ̂, Â]]〉, (3)

where 〈∗〉 = tr(∗ρ̂).
Hence, the set of the coupled first-order differential equa-

tions that can be presented in the matrix form:

d

dt
X = MX + K, (4)

with the vector X composed of the moments of the form
〈ϕ̂m〉, 〈L̂n

z 〉 and 〈ϕ̂mL̂n
z + L̂n

z ϕ̂
m〉, and the K vector collecting

the inhomogeneous part of the set of the differential equations.
The general solution of Eq. (4) can be written in the integral
form of

X (t ) = exp(Mt )X (0) + exp(Mt )
∫ t

0
ds exp(−Ms)K (s), (5)

which is particularly suited for the finite-rank matrix M.
In the Appendix, we provide the data for Eqs. (4) and (5)

for the moments up to the fourth order, where it is obvious that
the set of the coupled differential equations is not closed. To
overcome this problem [37–39], we introduce the following,
perturbationlike procedure.

For every moment denoted Ai(b, t ) ≡ 〈Âi(b, t )〉, we look
for the approximate solution for small positive b in the form

Ai(b, t ) = Ai(b = 0, t ) + fi(b, t ) = Ai(b = 0, t ) + b f (1)
i (t )

+ b2 f (2)
i (t ) + ... (6)

Therefore, the knowledge of the “unperturbed” Ai(b =
0, t ) reduces our task to solving the set of the coupled dif-
ferential equations for the fis, such that fi = 0,∀i for b = 0.

From the Appendix follow the exact differential equations
for the first and second moments:

d〈ϕ̂〉
dt

= 1

I
〈L̂z〉,

d〈L̂z〉
dt

= −Iω2〈ϕ̂〉 − 2γ 〈L̂z〉 − 3b〈ϕ̂2〉,
d〈ϕ̂2〉

dt
= 1

I
〈ϕ̂L̂z + L̂zϕ̂〉,

d〈ϕ̂L̂z + L̂zϕ̂〉
dt

= −2Iω2〈ϕ̂2〉 − 2γ 〈ϕ̂L̂z + L̂zϕ̂〉

+ 2

I

〈
L̂2

z

〉 − 6b〈ϕ̂3〉,
d
〈
L̂2

z

〉
dt

= −Iω2〈ϕ̂L̂z + L̂zϕ̂〉 − 4γ
〈
L̂2

z 〉 − 3b
〈
ϕ̂2L̂z

+ L̂zϕ̂
2〉 + 4Iγ kBT . (7)

Substituting Eq. (6) into Eq. (7) while keeping only
the terms linear in the constant b (that is, while
neglecting the terms of the form b fi), we obtain the following
set of the differential equations for the first corrections:

df (1)
1

dt
= 1

I
f (1)
2 ,

df (1)
2

dt
= −Iω2 f (1)

1 − 2γ f (1)
2 − 3〈ϕ̂2〉b=0,

df (1)
3

dt
= 1

I
f (1)
4 ,

df (1)
4

dt
= −2Iω2 f (1)

3 − 2γ f (1)
4 + 2

I
f (1)
5 − 6〈ϕ̂3〉b=0,

df (1)
5

dt
= −Iω2 f (1)

4 − 4γ f (1)
5 − 3〈ϕ̂2L̂z + L̂zϕ̂

2〉b=0, (8)

The “unperturbed” moments indexed in Eq. (8) by “b = 0”
follow from the closed sets of the differential equations for
the case b = 0, cf. the Appendix. In Eq. (8) we can recognize
the inhomogeneous part presented in the vector form: PT =
{0,−3〈ϕ̂2〉b=0, 0,−6〈ϕ̂3〉b=0,−3〈ϕ̂2L̂z + L̂zϕ̂

2〉b=0}; the su-
perscript “T” denotes the operation of the matrix transposi-
tion. Therefore, as desired, Eq. (8) represents a closed set
of equations for the corrections fis and hence also for the
first and second moments in Eq. (7). Actually, there appear
two independent closed sets of equations for the first and the
second moments to be separately analyzed in the next two
sections.

The general solution of Eq. (8) is of the form of Eq. (5):

F (t ) = exp(μt )F (0) + exp(μt )
∫ t

0
ds exp(−μs)P(s), (9)

where the vector X T is replaced by the vector F T =
{ f1, f2, f3, f4, f5}, while the matrix μ follows from
Eq. (8):

μ =

⎛
⎜⎜⎜⎝

0 1/I 0 0 0
−Iω2 −2γ 0 0 0

0 0 0 1/I 0
0 0 −2Iω2 −γ 2 2/I
0 0 0 −Iω2 −4γ

⎞
⎟⎟⎟⎠. (10)

Hence, the approximate solutions for the first-order correc-
tions for the first and second moments, while fi = b f (1)

i , read

〈ϕ̂〉 = 〈ϕ̂〉b=0 + f1,

〈L̂z〉 = 〈L̂z〉b=0 + f2,

〈ϕ̂2〉 = 〈ϕ̂2〉b=0 + f3,〈
L̂2

z

〉 = 〈
L̂2

z

〉
b=0 + f5, (11)
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whence the solutions for the standard deviations �ϕ̂ and �L̂z

readily follow:

�ϕ̂ =
√

〈ϕ̂2〉b=0 + f3 − (〈ϕ̂〉b=0 + f1)2,

�L̂z =
√〈

L̂2
z

〉
b=0 + f5 − (〈L̂z〉b=0 + f2)2. (12)

For different orders of approximation, different solutions
of the corrections fis are obtained; the increase in the order of
approximation increases the rank of the matrix μ in Eq. (9).

IV. THE FIRST PASSAGE TIME

The first passage time (FPT) method regards the minimum
time, tFPT, needed for a system to cross a threshold value
for the variable of interest. The shorter the tFPT, the faster
the transition from the initial state and hence the less stable
the system. The method has a long tradition in physics,
engineering, and natural sciences and has recently been used
for describing financial market volatility [30,34].

In the classical physics context, the so-called mean FPT
is of interest that is defined as the arithmetic mean of the
FPTs for different, stochastically chosen (numerically: sam-
pled) trajectories. Quantum-mechanical counterpart of the
(mean-)FPT is an ill-defined and the context-sensitive concept
[43–46]. Since it is linked with the deterministic classical
trajectories, there is not a straightforward quantum mechan-
ical definition. In general, quantum models may even end up
with the nonpositive probability density [43]. Approaching
the classical meaning may call for the intermediate quantum
measurements [43,44], while other definitions regard e.g.,
dynamics of the system where the FPT is linked with the

system’s state transition [45]—very much like the general task
of the time bound for the quantum state change [46–48].

In this paper we introduce a quantum mechanical counter-
part, which we dub “quantum FPT” (QFPT), by investigating
the minimum time needed for the first moment ϕ = 〈ϕ̂〉 to
take some threshold value ϕth for the chosen initial ϕ◦ value;
further comments on this can be found in Discussion section.
Bearing in mind the constraint of our considerations, i.e., the
small allowed rotations (i.e., a finite set of small rotations), we
consider |ϕth − ϕ◦| ≈ 10−4. That is, for every chosen initial
ϕ◦, we assume a close threshold ϕth value for the angle
observable, and numerically calculate tQFPT as the minimum
time needed for the transition ϕ◦ → ϕth.

Dependence of tQFPT on the damping factor γ and the
bath’s temperature T is widely investigated. Our main goal in
this section is to extend the standard analysis by investigating
the role of the propeller size.

Comparison of different sizes of the propeller rota-
tors is performed by comparing numerically obtained val-
ues for tQFPT for the chosen initial positions, ϕ(N )

◦ ∈
{1.1ϕ(N )

max, 1.3ϕ(N )
max, 1.5ϕ(N )

max, 1.6ϕ(N )
max}, for the number N ∈

{1, 2, 3, ..., 10} of the blades. That is, our goal in this section
is to obtain analytical expression for the tQFPT dependence on
the number N of the blades, denoted tQFPT(N ).

With the aid of Eq. (A4) in the Appendix for the standard
deviation �ϕ̂, the first pair of equations (for the first moments)
in Eq. (8) is straightforward analytically to solve. Due to
Eq. (11), the corrections fi contribute to the initial values of
the first moments by introducing additional size-dependence
for 〈ϕ̂〉. Therefore, to facilitate comparison of the results for
the propellers of different sizes, we choose the initial val-
ues for the corrections: f (1)

i (t = 0) = 0, i = 1, 2, ..., 5. Then,
due to Eq. (9), follow the analytical expressions for the
corrections:

f1 = 3b

{
− 1

Iω2
+ e−γ t

Iω2

[
cosh(�t ) + γ

�
sinh(�t )

]}{
kBT

Iω2
+ e−2γ t (B2 + q) sinh2(�t )

I2�2

+ e−2γ t (2AB + r)[2γ sinh2(�t ) + � sinh(2�t )]

2I�2
+ e−2γ t (A2 + p)[−ω2 cosh2(�t ) + γ 2 cosh(2�t ) + γ� sinh(2�t )]

�2

+kBTe−2γ t [ω2 − γ 2 cosh(2�t ) − γ� sinh(2�t )]

Iω2�2

}
(13)

and

f2 = − 3be−3γ t

2I2ω2�3
sinh(�t )

(
2ω2(B2 + q) sinh2(�t )

+ 2I2ω2(A2 + p)[−ω2 cosh2(�t ) + γ 2 cosh(2�t ) + γ� sinh(2�t )] + I
{
2kBT γ 2[e2γ t − cosh(2�t )]

+ 2γ [ω2(2AB + r) sinh2(�t ) − kBT � sinh(2�t )] − ω2[2kBT (e2γ t − 1) − �(2AB + r) sinh(2�t )]
})

, (14)

from which it is obvious that the initial condition f (1)
i (t =

0) = 0 is satisfied for both i = 1, 2, while the asymp-
totic expressions read: limt→∞ f (1)

1 = −3kBT/(Iω2)2 and
limt→∞ f (1)

2 = 0. The constants appearing in Eqs. (13) and
(14) are as follows: A = 〈ϕ̂(0)〉, B = 〈L̂z(0)〉, p = [�ϕ̂(0)]2,

q = [�L̂z(0)]2, and r = σϕL(0). This somewhat cumber-
some notation is used to facilitate the presentation of the
quantum Cauchy-Schwarz inequality, σϕL ≡ 〈ϕ̂L̂z + L̂zϕ̂〉 −
2〈ϕ̂〉〈L̂z〉 � 2�ϕ̂�L̂z, which is satisfied by the choice of
the initial values, p = 0.01, q = 0.005, r = 0, while A = ϕ(N )

◦
and B = 1.2.
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(a) (b)

(c)

FIG. 2. Plot of δϕ ≡ 〈ϕ̂(t, N )〉 − ϕth. Intersection with the horizontal plane determines the tQFPT for the choice of the parameters: (a) γ◦ =
20, kBT = 0.001, ϕ (N )

◦ = 1.1 and (b) γ◦ = 0.11, kBT = 100, ϕ (N )
◦ = 1.3. Panel (c) presents the numerically obtained dependence of tQFPT(N )

for the (a) and (b) plots, the dashed line and the solid line, respectively.

Substituting 〈ϕ̂〉b=0 from Eq. (A3) in the Appendix and
Eq. (14) into the first equation in Eqs. (11), we obtain the
general form of the first-order solution for 〈ϕ̂(t )〉. Then we
perform numerical calculation of tQFPT as described above
for all combinations of the number N ∈ {1, 2, 3, ..., 10} and
certain values of γ◦ and kBT , and the above distinguished
initial angles ϕ(N )

◦ with the threshold values defined as |ϕ(N )
th −

ϕ(N )
◦ | ≈ 0.0001,∀N .

We search for the minimum time for which the value ϕ(t )
attains the threshold value, ϕth; the equality ϕ(tQFPT) = ϕth

(i.e., δϕ = 0 for t = tQFPT) is presented in this section by
the constant (horizontal) plane. Different combinations of the
values for ω and b have been investigated. Without loss of gen-
erality, below, we provide the results for ω = 0.1, b = −0.01
that qualitatively present the findings for all the considered
values of the parameters ω and b.

A. The case γ◦ > ω

We choose the values for γ◦ ∈ [0.11, 20] that are all larger
than the chosen ω = 0.1. We find only weak dependence on
the initial position and practically negligible contribution of
kBT . There is an increase of tQFPT with the number N of the
blades, with the faster increase for smaller N . That is, larger
rotators are more stable.

Without loss of generality, Fig. 2 illustrates two cases of
relatively small and relatively large values of the damping
factor for different initial positions and different temperatures.

Figure 2(c) emphasizes the (numerically obtained) tQFPT-
dependence on the number of blades N . Approximate analyt-
ical expressions are [scaled yet]: (a) −2.8 + 6.7N − 1.3N2 +
0.1N3, and (b) 0.67 + 2.5N . It is worth repeating: the ob-
served patterns for tQFPT(N ) do not change with the variation
of the initial position or of the temperature T . The magnitude
of change of 〈ϕ̂〉 is of the same order for the two cases.

The observed increase of tQFPT with the increase of the
number N may seem intuitively expected–the larger the sys-
tem, the larger its inertia and therefore the slower the system’s
dynamics. That is, one may ask if the observed behavior can
be reduced to the system’s inertia. Below, we demonstrate that
this is not the case.

By the inertial effect, we assume the effect due to the
increase of the system’s inertia, while all the other system
parameters remain unchanged. Therefore, to distinguish the

inertial effects, we remove the size-dependence everywhere
except in the moment of inertia, I = NI◦. More formally, in
the above expressions, we remove the N-dependence from the
damping factor γ while keeping the rest of the expressions.

In Fig. 3, the results are presented for the inertial case with
the same choice of system-parameters as for the general case
Fig. 2. Figure 3(c) distinguishes the (numerically obtained)
plots for tQFPT(N ) with the linear analytical expressions: (a)
7.5 + 24N and (b) 6.7 + 25N , the solid line and the dashed
line, respectively.

B. The case 10γ◦ < ω

The choice γ◦ ∈ [0.00001, 0.0099] is made to fulfill the
constraint 10γ◦ < ω. It is the general finding: the results
weakly depend on the initial position with the negligible
contribution of the bath’s temperature. Therefore, the same
initial position and the temperature are chosen for Fig. 4.

Figure 4 illustrates the linear dependence of tQFPT on N
that is numerically found approximately as 25.1N for both the
exact and the inertial case.

C. Comments

The small magnitude of change of the initial 〈ϕ̂〉 is assumed
for all the considered cases. The magnitude of the change is of
the order of 10−4 (or even smaller), which meets the condition
of small rotations; i.e., δϕ � |〈ϕ̂〉 − ϕ◦| � 2π .

The dominant factors for the investigated rotator’s dynam-
ics is the ratio γ◦/ω. The rest of the system parameters (the
initial position and the bath’s temperature) is virtually of no
influence on the system’s dynamics described by the first
moment of the angle observable.

For the case γ◦ � ω, the two different “laws” for tQFPT(N )
are found—a weakly cubic and a linear dependence on N .
Deviation from the approximately linear dependence is γ◦-
dependent: the larger the γ◦, the smaller the N for which
the departure becomes nonnegligible. For example, for γ◦ ≈
2, the value N ≈ 7 is found, while for γ◦ = 20, the value
N ≈ 4 is found. For all other choices of γ◦ relative to ω,
the approximately linear law for tQFPT(N ) is found, including
the inertial cases. The magnitude of δϕ is the same for all the
considered combinations of the system parameters.

While for the case 10γ◦ < ω approximately the linear
tQFPT(N ) dependence is found, for larger values of γ◦, a
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(a) (b)

(c)

FIG. 3. The parameters values and the meaning of the plots is the same as described in the caption of Fig. 2.

weakly cubic dependence is found. More precisely: the non-
linear terms in tQFPT(N ) are present for all the values of γ◦
but become quantitatively observable only for larger values of
γ◦. Therefore, we conclude that the increase of tQFPT with the
increase of the number N of the propeller blades cannot be
reduced to the purely inertial effect.

V. THE STANDARD DEVIATIONS

The last three equations in Eqs. (8) constitute a closed
system of coupled first-order differential equations while as-
suming the expressions are known for the third moments,
〈ϕ̂3〉b=0, 〈ϕ̂2L̂z + L̂zϕ̂

2〉b=0, which follow from Eq. (A5) in the
Appendix. As it is emphasized in the Appendix, analytical
solutions for the third moments are rather large and not very
informative. Therefore, we numerically solve both Eq. (A5)
and Eq. (8) and present solutions for (�ϕ̂)2 and (�L̂z )2 in the
graphical form with the clearly indicated dependencies on the
number N of the blades and on time t .

We use the standard fourth order Runge-Kutta method with
an emphasis on the numerical stability as well as numeri-
cal reliability. Numerical stability is provided by the proper
choice of the parameters to obtain the sufficiently large deter-
minant for the systems of equations. Numerical reliability is
additionally checked by employing the adaptive Runge-Kutta
(RKF45) method for certain sensitive points discovered in the
course of the computation.

The analysis has been performed for different combina-
tions of the values of ω and b with qualitatively the same re-
sults found for all the combinations. Below, for simplicity, we
present the results obtained for ω = 1 and b = −0.001, while
kBT ∈ {0.01, 0.1, 1, 100} and I◦ = 3. For all the plots we use
the initial values: [�ϕ̂(0)]2 = 0.01, [�L̂z(0)]2 = 5, σϕL (0) =
0, while for the third-moments we take the same initial value
0.1. Initial values for the first moments are: 〈ϕ̂(0)〉 = 1.1,
〈L̂z(0)〉 = 1.2; as distinct from the investigation of the FPT
(Sec. IV), those values are of the secondary importance. The
only distinction between the two regimes regards the damping
factor values. For convenience, in the plots given below, we
use σ 2 to denote the square of the standard deviation of the
observables.

A. The γ◦ > ω case

For the damping factor, we choose the following values:
γ◦ ∈ {1.1, 2}. We do not consider the larger values since the
strong damping masks the investigated effects, while we do
not restrict the temperature values.

(a) First, we notice the known behavior observed [19] for
the pure harmonic oscillator: both �ϕ̂ and �L̂z increase with
time, while �ϕ̂ decreases and �L̂z increases with the increase
of the number N of the blades. This behavior is found for γ◦ =
1.1 (similarly for γ◦ = 2) for high temperature of kBT = 100,
cf. Fig. 5.

FIG. 4. Plot of δϕ ≡ 〈ϕ̂(t, N )〉 − ϕth. Intersection with the horizontal plane determines the tQFPT for the choice of the parameters, γ◦ =
0.0099, kBT = 0.001 and ϕ (N )

◦ = 1.6, for (a) the exact case and (b) the inertial case.
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FIG. 5. The parameters values γ◦ = 1.1 and kBT = 100 are used for the square of the standard deviation for: (a) the angle (the top line for
N = 1 and the bottom line for N = 10, consecutively) and (b) the angular momentum (the top line for N = 10 and the bottom line for N = 1,
consecutively).

(b) For all other cases, a sharp initial decrease and the local
maximums for short time intervals are observed for �L̂z; that
is followed by the increase of �L̂z with time as well as with
the increase of N , cf. Fig. 6(b). For kBT = 0.01 we observe
decrease of �ϕ̂ with the passage of time, along with the
existence of the minimum (�ϕ̂)min for certain values of the
number of blades, around N = 3–5, cf. Fig. 6(a).

(c) For the medium temperature, e.g., kBT = 0.1, in Fig. 7
we observe a saturation for longer time for both �ϕ̂ and
�L̂z, that reveals a “smooth” transition between the above
“extreme” cases (a) and (b).

B. The 10γ◦ < ω regime

We choose the following values for the damping factor:
γ◦ ∈ {0.00011, 0.0011, 0.011}, while we do not restrict the
temperature values.

(a) Again, for kBT = 100, in Fig. 8, we observe the stan-
dard behavior characteristic for the pure harmonic dynamics
as for the case presented in Sec. V A (a).

(b) For kBT = 0.01 for all values of γ◦, we observe de-
crease of both �ϕ̂ and �L̂z with time (Fig. 9). Dependence on
the number N of blades is expected: �ϕ̂ decreases while �L̂z

increases with the increase of N . Interestingly, the decrease
(damping) of the oscillation amplitude is different for the

rotators of different sizes. In Fig. 9, the maximum damping is
around N = 7, 8 for short times for both �ϕ̂ and �L̂z, while
for �L̂z the maximum is around N = 3, 4 for longer time
intervals. From Fig. 10 we can detect the maximum damping
for the angle as in Fig. 9, but for the angular momentum
standard deviation, the maximum damping is around N = 3.

(c) For the medium temperature, e.g., kBT = 0.1, it is
observed saturation for the time-change of both �ϕ̂ and �L̂z,
thus exhibiting a smooth transition between the two cases (a)
and (b), while the minimum observed for the case (b) is now
shifted to the values N = 2–4—cf. Fig. 10.

C. Comments

The “regular” (expected) behavior found for the pure har-
monic rotator [19] is here detected practically only for the
high temperature cases that are presented by Figs. 5 and 8:
both �ϕ̂ and �L̂z increase, more-or-less, monotonically with
time, while �ϕ̂ decreases and �L̂z increases with the increase
of the number N of the blades. For all other combinations of
the parameters, importance of the small nonharmonic term
appears as follows: (i) Unexpectedly, a time decrease of the
standard deviations for both the angle and angular momentum
is found as presented by Figs. 6 and 9; (ii) in certain cases,
e.g., Fig. 6(b), a sharp initial decrease and nonmonotonic

FIG. 6. The parameters values γ◦ = 1.1 and kBT = 0.01 are used for the square of the standard deviation for: (a) the angle and (b) the
angular momentum.
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FIG. 7. The parameters values γ◦ = 1.1 and kBT = 0.1 are used for the square of the standard deviation for: (a) the angle and (b) the
angular momentum.

FIG. 8. The parameters values γ◦ = 0.011 and kBT = 100 are used for the square of the standard deviation for: (a) the angle (the top line
for N = 1 and the bottom line for N = 10, consecutively) and (b) the angular momentum (the top line for N = 10 and the bottom line for
N = 1, consecutively).

FIG. 9. The parameters values γ◦ = 0.011 and kBT = 0.01 are used for the square of the standard deviation for: (a) the angle and (b) the
angular momentum.

FIG. 10. The parameters values γ◦ = 0.011 and kBT = 0.1 are used for the square of the standard deviation for: (a) the angle and (b) the
angular momentum.
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behavior of �L̂z is obtained; (iii) a nonmonotonic dependence
of �ϕ̂ on the number of blades N is observed, cf. Fig. 6(a);
(iv) in certain cases (e.g., Figs. 5, 8, and 9) the one-blade
rotator exhibits large instability i.e., a large and fast increase
of �ϕ̂ for short time; (v) damping of the oscillation amplitude
exhibits a nonmonotonic dependence on the number of blades,
with the minimum values depending on the temperature-see
Figs. 9 and 10.

It is important to stress that for the medium values of kBT ,
a transition from the “regular” [the cases (a), i.e., large kBT ]
to the unexpected [the cases (b), i.e., small kBT ] behavior is
detected. That is, in Figs. 7 and 10, there is a relatively fast
(at least approximate) saturation of the standard deviations,
without further decrease or increase for both �ϕ̂ and �L̂z.
Therefore, we conclude that the above point (i) is not a
“pathology” or a result of incorrect numerics. Rather, we
observe a consistent dynamics for both observables.

The magnitudes of the standard deviation for �L̂z are by
orders larger than for �ϕ̂, for both regimes. For example,
from Sec. V A we can learn that the magnitude for the angle
observable takes the values (approximately) from the interval
(0.035,30), while for the angular momentum the interval is
(0.3,3000); and similarly for Sec. V B. Therefore, dynamics of
the angular momentum may be regarded much more unstable
than dynamics of the angle observable; nevertheless, this
should be kept in conjunction with the observation (see above)
of large instability of the angle observable in certain cases for
N = 1.

VI. DISCUSSION

The concept of size of a system is poorly defined and
investigated in the standard quantum theory. It is not only a
matter of number of the constituent particles in the system
but also of the specific choice of degrees of freedom that
describe the system’s geometrical configuration or shape. This
is still an open issue of the general quantum theory of open
systems [49–51]. In this paper we do not tackle the issue of
the microscopic quantum origin of the definite size and shape
of the composite quantum systems. Rather, we assume the
propellerlike shape of certain molecular-rotators species as a
phenomenological data, which is used in our considerations.
Fortunately, introducing the size for the propeller-shaped ro-
tators is possible [19] and is used as the starting point of the
present study. Linear dependence of the damping factor γ and
the moment of inertia I on the number N of the blades makes
these two parameters mutually dependent on each other—in
contrast to the standard theory [12,21].

We restrict our considerations to the maximum N = 10
blades for at least two reasons. On the one hand, this is
in accordance with the present state of the art in producing
the molecular rotators [2]. On the other hand, increase in
the number of the blades results in the decrease of the size
of the environment monitoring the individual blades, thus
possibly jeopardizing the assumption of the sufficiently large
environment for every blade separately. Finally, for very large
N , the propeller becomes similar to the rotating disk, which is
a completely different model.

Limitations of our considerations follow from the choice of
the method of Caldeira and Leggett as well as from the choice

of investigation of the first passage time and the dynamics
of the standard deviations for the conjugate observables of
the rotator. As it is emphasized in the Introduction, results
regarding the first passage time cannot be straightforwardly
used for estimation of the escape rates even for the same
physical model of the rotator. To this end a separate analysis
of both the escape time [14,32] as well as of the first passage
time on the basis of a semiclassical Wigner master equation
[15–18] can be recognized as another direction of the future
research worth pursuing.

Our definition of the quantum first-passage-time does not
coincide with those already used in the literature. In Ref. [45],
the time needed for the transition regarding the well-defined
initial and the final state has been investigated with the
mean-FPT and calculated for all the possible intermediate
transitions. This method allows for the calculation of the
FPT for the first moments of all the system observables but
not including the continuous-variable (CV) systems, which
is our case. The quantum random walk model reduces to
the classical one in the case of the one-dimensional CV
system [44]—which is our case. However, this does not allow
for the direct comparison of our results with the classical
counterparts, including the NES effect [23–27]. In this regard,
on the one hand, quantum formalism does not allow for the
well-defined spatial trajectories of the quantum system. On
the other hand, the QFPT, introduced in this paper, even in the
classical context, does not reveal much about the mean-FPT.
That is, when the average (mean) value of the relevant variable
attains the threshold value, there are the classical trajectories
well above as well as below the threshold value. Therefore,
in general, the concept of the mean-FPT is well defined only
in the classical-physics context. Its transfer to the quantum-
mechanical context, especially while introducing the concept
of size of the quantum objects is nontrivial and here not fully
elaborated.

The two methods used in Secs. IV and V qualitatively
coincide but are not mutually equivalent. As emphasized in
the Introduction, the results presented in Secs. IV and V do
not qualitatively change with the variations of the parameters
ω and b; those variations indirectly include the possible de-
pendence of both ω and b on the number N of the propeller
blades.

The QFPT method is suitable for investigating the system
dynamics on the very short time scale that does not exhibit
any significant role of certain system parameters, such as en-
vironment temperature kBT or the initial position ϕ◦. Stability
of the rotation increases with the increase of the number N
of the blades that, in turn, proves not to be reducible to the
system inertia.

In addition, the standard deviations of both the angle
and angular momentum observables exhibit strong parameter-
dependence with some unexpected behavior as presented in
Secs. IV C and V C. None of these findings appear for the
purely harmonic case [19], for which monotonic increase with
time applies for both �ϕ̂ and �L̂z, with the general decrease
of �ϕ̂ and the increase of �L̂z with the increase of the number
N of the blades; this behavior can be found in Figs. 5 and 8 as
well as in Fig. 7 for the L̂z observable for longer time intervals.

Our results include the standard overdamped (γ◦ > kBT )
and underdamped (10γ◦ < kBT ) regimes that are presented by
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Figs. 6 and 7, and by the Figs. 5 and 8, respectively. Compared
in this context, Figs. 6 and 7 for the overdamped regime reveal
the unexpected decrease of the standard deviations for both
observables. The decrease is more pronounced for the angle
than for the angular-momentum observable, while, however, it
is more pronounced for the lower temperature. The behavior
obtained for the underdamped regime, presented by Figs. 5
and 8 exhibits the initial increase of the standard deviations for
both observables that is followed by saturation in the longer
time intervals, for every number of blades.

Now, borrowing from Sec. V C, the list of the stability
criteria for the standard deviations known for the purely
harmonic case [19] is nontrivially extended and varied as
follows.

A. The choice of the observable to be acted on

The choice of the observable to be externally manipulated
strongly depends on the criteria (B)–(E) presented below,
while bearing in mind that for certain cases (see above)
dependence on the number N of the blades provides additional
contributions that differ for the conjugate observables ϕ̂ and
L̂z. For example, manipulating the angle may be preferable
for the case γ◦/ω > 1 for the environment on the low tem-
perature and for the relatively longer time intervals (after
the initiation/preparation of the rotator), when the choice of
N ∈ {4, 5, 6} should be made especially if the relatively small
magnitude of change of the standard deviation is required—cf.
Fig. 6(a). However, if it is preferable to quickly perform the
fast actions that are to be exerted on the system [cf. criterion
(E)] after the system initialization, then manipulation of the
angular momentum may be a preferred choice when N ∈
{3, 4, 5} should be made—cf. Fig. 6(b).

B. The parameter regime

Even for the same ratio of 10γ◦/ω, different behavior of the
standard deviations is observed—compare Fig. 5 with Fig. 6
(i.e., compare Fig. 8 with Fig. 9). Generally, the small temper-
ature of the environment provides better stability; however, in
certain cases there are exceptions referring to the short time
behavior—which [cf. criteria (D) and (E) below] is of impor-
tance for the protocols right after the system initialization.

C. The magnitude of change of the standard deviations

Typically, the magnitude for the angle is smaller, except
for N = 1 (cf., e.g., Fig. 5). The different conclusions are
drawn when the amplitude of oscillation is in question. Then
a nonmonotonic dependence on the number N of the blades is
found–cf. Figs. 9 and 10.

D. The short versus the long time behavior

The short time behavior is in strong conjunction with
the above items (A) and (B) and may prefer the relatively
high temperature—compare, e.g., Figs. 5 and 8. The long-
time behavior generally exhibits saturation of the standard
deviations and, in this sense, a more reliable prediction.
Needless to say, the choice of the time scale for the system
manipulation cannot be made without a reference to all the

other criteria, notably the criterion (E). Additionally, for the
longer time intervals, the nonmonotonic dependence of �ϕ̂

on N is observed—see Fig. 6.

E. The rate of the external actions

It can be expected [19] that the external actions that are not
included in the master Eq. (2) can increase (and possibly accu-
mulate) standard deviations for both choices in criterion (A).
Therefore, a large number of fast actions performed in a short
time interval may lead to the uncontrollable increase in the
standard deviation(s) as compared with the small number of
the longer lasting actions in the same time interval. Thus, use-
fulness of the quick versus the slow actions is in strong con-
junction with the above criteria, notably with the criterion (D).

Therefore, we face the absence of simple rules or recipes
for designing the protocols for desired control of the propeller-
shaped molecular (rigid) planar rotators. The possible combi-
nations of the criteria require a procedure that is along the
lines of optimization procedures in engineering [52]. This
requires a separate and careful analysis that is not part of this
paper. This constitutes our answer to the question posed in
Introduction on the physical role of the size and shape for the
dynamical stability of the propeller-shaped molecular rotators.
As a noteworthy part of the answer, we stress the fact that
the role of the size of the propellers cannot be reduced to the
more-or-less pure inertial effects widely known and expected
in the classical physical context.

VII. CONCLUSION

The presence of a small cubic term in the external po-
tential for the rotator introduces significant departure from
the exact harmonic potential. Particularly, the standard de-
viations for the angle and angular momentum observables
may dynamically decrease for some parameter regimes while
exhibiting nonlinear dependence on the number of “blades”
of the propellerlike shaped molecular rotator. We also observe
irreducibility of the obtained results to the purely inertial
effects, which may be intuitively expected for the classical
regime of the rotator dynamics. The sensitivity of rotation to
details of the model and the parameter regimes emphasizes
that utilizing the propeller rotations stability is an optimization
problem that requires a separate careful analysis.
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APPENDIX: DIFFERENTIAL EQUATIONS FOR THE
MOMENTS

Derivation of the differential equations for the moments,
Eq. (3), is straightforward but rather tedious. Here we provide
the exact results regarding Eq. (4), up to the moments of the
fourth order.
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The transposed vector composed of the moments: X T = {〈ϕ̂〉, 〈L̂z〉, 〈ϕ̂2〉, 〈ϕ̂L̂z + L̂zϕ̂〉, 〈L̂2
z 〉, 〈ϕ̂3〉, 〈ϕ̂2L̂z + L̂zϕ̂〉, 〈ϕ̂L̂2

z +
L̂2

z ϕ̂〉, 〈L̂3
z 〉, 〈ϕ̂4〉, 〈ϕ̂3L̂z + L̂zϕ̂

3〉, 〈ϕ̂2L̂2
z + L̂2

z ϕ̂
2〉, 〈ϕ̂L̂3

z + L̂3
z ϕ̂〉, 〈L̂4

z 〉}.
The related matrix M reads

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 α1 0 0 0 0 0 0 0 0 0 0 0 0
−α2 −2α3 −3b 0 0 0 0 0 0 0 0 0 0 0

0 0 0 α1 0 0 0 0 0 0 0 0 0 0
0 0 −2α2 −2α3 2α1 −6b 0 0 0 0 0 0 0 0
0 0 0 −α2 −4α3 0 −3b 0 0 0 0 0 0 0
0 0 0 0 0 0 3α1

2 0 0 0 0 0 0 0
0 0 0 0 0 −2α2 −2α3 2α1 0 −6b 0 0 0 0

8C1 0 0 0 0 0 −2α2 −4α3 2α1 0 −6b 0 0 0
0 12C1 0 0 0 0 0 −3α2

2 −6α3 0 0 −9b
2 0 0

0 0 0 0 0 0 0 0 0 0 2α1 0 0 0
0 0 0 0 0 0 0 0 0 −2α2 −2α3 3α1 0 0
0 0 8C1 0 0 0 0 0 0 0 −2α2 −4α3 2α1 0

−24bh̄2 0 0 12C1 0 0 0 0 0 0 0 −3α2 −6α3 2α1

0 −12bh̄2 0 0 24C1 0 0 0 0 0 0 0 −2α2 −8α3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A1)

while the transposed vector K :

KT = {
0, 0, 0, 0, 4C1, 0, 0, 0,−3bh̄2, 0, 3α1h̄2 − 3b〈ϕ̂5〉,−4α3h̄2

− 6b〈ϕ̂4L̂z + L̂zϕ̂
4〉,−3α2 h̄2 − 9b

〈
ϕ̂3L̂2

z + L̂2
z ϕ̂

3
〉
,−6b

〈
ϕ̂2L̂3

z + L̂3
z ϕ̂

2
〉}

. (A2)

In Eqs. (A1) and (A2): α1 = 1/I, α2 = Iω2, α3 = γ ,C1 = Iγ kBT .
From Eq. (A1) it is obvious that, for the cubic potential, the set of equations is not closed: a set of equations for one order

of the moments depends on the higher-order moments (cf. the terms proportional to the constant b). For the exactly harmonic
potential (b = 0), the sets of the equations are closed for every order of the moments. The expressions for the first moments for
the purely harmonic case are well known to read

〈ϕ̂〉b=0 = exp(−γ t )

[
〈ϕ̂(0)〉

(
cosh �t + γ

�
sinh �t

)
+ 〈L̂z(0)〉

I�
sinh �t

]

〈L̂z〉b=0 = exp(−γ t )

[
〈L̂z(0)〉

(
cosh �t − γ

�
sinh �t

)
− Iω2

�
〈ϕ̂(0)〉 sinh �t

]
, (A3)

while for the standard deviations we borrow the exact solutions from [19]

(�ϕ̂)2
b=0 = kBT

Iω2�2
{�2 + exp(−2γ t )[ω2 − γ 2 cosh(2�t ) − γ� sinh(2�t )]} + 〈�L̂z(0)〉2

I2�2
exp(−2γ t ) sinh2(�t )

+〈�ϕ̂(0)〉2

�2
exp(−2γ t )[−ω2 cosh2(�t ) + γ 2 cosh(2�t ) + γ� sinh(2�t )]

+σϕL(0)

2I�2
exp(−2γ t )[2γ sinh2(�t ) + � sinh(2�t )],

(�L̂z )2
b=0 = IkBT

�2
{−ω2[1 − exp(−2γ t )] + γ 2[1 − exp(−2γ t ) cosh(2�t )] − γ� exp(−2γ t ) sinh(2�t )}

+ (�L̂z(0))2

�2
exp(−2γ t )[−ω2 cosh2(�t ) + γ 2 cosh(2�t ) − γ� sinh(2�t )] + I2ω4

�2
[�ϕ̂(0)]2 exp(−2γ t ) sinh2(�t )

+ Iω2

2�2
σϕL(0) exp(−2γ t )[2γ sinh2(�t ) − � sinh(2�t )], (A4)

where � =
√

γ 2 − ω2 and σϕL = 〈ϕ̂L̂z + L̂zϕ̂〉 − 2〈ϕ̂〉〈L̂z〉. The expressions for 〈ϕ̂2〉 and 〈L̂2
z 〉 are obtained from Eqs. (B.1)–

(B.3) in Ref. [19] by replacing (�ϕ̂)2 by 〈ϕ̂2〉, the (�L̂z )2 by 〈L̂2
z 〉, and σϕL by 〈ϕ̂L̂z + L̂zϕ̂〉.

From Eq. (A1) follows the set of the equations for the third-order moments for the exact harmonic potential (b = 0):

d〈ϕ̂3〉b=0

dt
= 3

2I
〈ϕ̂2L̂z + L̂zϕ̂

2〉b=0,

d〈ϕ̂2L̂z + L̂zϕ̂
2〉b=0

dt
= −2Iω2〈ϕ̂3〉b=0 − 2γ 〈ϕ̂2L̂z + L̂zϕ̂

2〉b=0 + 2

I

〈
ϕ̂L̂2

z + L̂2
z ϕ̂

〉
b=0,
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d
〈
ϕ̂L̂2

z + L̂2
z ϕ̂

〉
b=0

dt
= −2Iω2〈ϕ̂2L̂z + L̂zϕ̂

2〉b=0 − 4γ
〈
ϕ̂L̂2

z + L̂2
z ϕ̂

〉
b=0 + 2

I

〈
L̂3

z

〉
b=0 + 8Iγ kBT 〈ϕ̂〉b=0,

d
〈
L̂3

z

〉
b=0

dt
= −3

2
Iω2

〈
ϕ̂L̂2

z + L̂2
z ϕ̂

〉
b=0 − 6γ

〈
L̂3

z

〉
b=0 + 12Iγ kBT 〈L̂z〉b=0. (A5)

With the use of Eq. (A3), the system Eq. (A5) becomes
closed. Analytical solutions of Eq. (A5) are rather large
and physically nontransparent, and therefore will not be

explicitly given here. Solutions for 〈ϕ̂3〉b=0 and 〈ϕ̂L̂z +
L̂zϕ̂

2〉b=0 are implicit to our numerical calculations performed
in Sec. IV.
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[48] M. Dugić and M. M. Ćirković, Phys. Lett. A 302, 291 (2002).
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