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Abstract. We derive explicit expressions for the first and second moments as well as 

the correlation function for a planar (one-dimensional) quantum Brownian rotator 

placed in the external harmonic potential. Our results directly provide the standard 

deviations for the azimuthal angle and the canonically conjugate angular momentum 

for the rotator. We find that there are some significant physical differences between this 

model and the free rotator model, which is well investigated in the literature.  
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1. INTRODUCTION 

The theory of open quantum systems has a very important role in many applications 

of quantum physics since perfect isolation of quantum systems is not possible in practice 

(Breuer and Petruccione 2002, Rivas and Huelga 2011).  Quantum Brownian motion 

(QBM, Caldeira and Leggett 1983) is paradigmatic for the field of open quantum systems 

theory (Breuer and Petruccione 2002). Description of quantum decoherence (Giulini et al 

1996, Dugić 2004) as well as modeling of ―quantum dissipation‖ is directly provided for 

QBM as a realistic physical situation with the well-defined classical counterpart. The 

usefulness of the QBM model places the model at the heart of applications regarding the 

nano- and mesoscopic systems and some artificial setups as well as regarding the related 

emerging technologies, e.g. (Milburn 1987, Jones 2008, Kottas et al 2005). 
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The standard model of Brownian motion (Caldeira and Legett 1983, Breuer and 

Petruccione 2002) regards a point-like particle with the mass   and is directly applicable 

(mathematically isomorphic) to an arbitrary set of the particle’s degrees of freedom. From the 

basic quantum master equation, the so-called Caldeira-Leggett equation (Caldeira and Leggett 

1983), the general form of the differential equations can be deduced straightforwardly for the 

first and second moments of the basic observables - of the position and momentum 

observables. In the Caldeira-Leggett model the bath is a collection of harmonic oscillators 

and the coupling to the reduced system is linear and weak (Caldeira and Legett 1983, Breuer 

and Petruccione 2002). The simplest and most detailed studied case is free Brownian motion. 

A somewhat complicated and even more relevant case is the case of a Brownian particle in the 

external harmonic field (Caldeira and Legett 1983, Breuer and Petruccione 2002). We are not 

aware of any explicit results presented in the literature regarding the aforementioned first and 

second moments for a Brownian particle in the external harmonic field.  

In this paper we go even beyond the standard (Caldeira and Legett 1983, Breuer and 

Petruccione 2002) translational Brownian motion. Bearing in mind the importance of the 

molecular nano-cogwheels for the emerging nano-technology, we employ the quantum-

mechanical model for the classical Brownian-rotator-model of the molecular cogwheels 

(Kottas et al 2005, Browne and Feringa 2006, Hutchinson et al 2014, Korobenko et al 2014, 

etc.) with the ―azimuthal‖ angle   ,    - as the only degree of freedom and the moment 

of inertia denoted  . The importance of the harmonic potential for the quantum rotational 

Brownian motion here considered stems from at least the following two sources. First, in 

realistic physical situations, the rotating parts of the molecular rotors may rest on the solid 

surfaces, where the links with the surfaces (actually the chemical bonds) provide an 

effective torsional field for rotation (Kottas et al 2005). The first approximation for such 

situations is a harmonic field for small angles of rotation. Similarly, external electric fields 

exerted on polar molecules often lead to an effective harmonic field (Kottas et al 2005) as it 

is assumed in our considerations. Second, numerical studies, e.g. (Boyke Schönborn et al 

2009), of the effective external potential for molecular rotations point out to the existence of 

the local minima for rotation. Again, for small rotations (used as the boundary condition for 

the model), in the vicinity of the bottom of a local minimum, the dominant dynamics are 

harmonic-oscillation rotations around the equilibrium position, which is defined as the 

bottom of the potential well.  

In comparison with the results for the free rotator out of any external field, we can 

conclude that there are some significant physical differences between these two models that 

are subject of brief discussion in Section 5. Clearly, the results of this paper equally regard 

the translational model.  

2. THE TASK 

The original Caldeira-Leggett model of QBM (Caldeira and Leggett 1983) regards a 

one-dimensional particle with a single position (Descartes) degree of freedom,  , and 

mass  . The conjugate momentum operator   satisfies the commutator equation ,   -  
        , where   is the Planck constant. Transition to the rotational model of the 

Caldeira-Leggett master equation as presented in (Suzuki and Tanimura 2001) is justified 

by the analogous commutator relation ,    -    , where there now appear the rotational 

variables   and   , instead of the Descartes   and  , while the moment of inertia of the 



 The First and Second Moments for the Quantum Brownian Planar Rotator 73 

rotator, denoted  , exchanges the mass   of the translational model. While we adopt the 

model proposed in (Suzuki and Tanimura 2001) without a modification, the following 

remark is in order.  

As distinct from the continuous and unbounded   and  , the angle variable   is bounded 

(its eigenvalues   ,    -), while    is with the pure discrete spectrum (     
          ). Then the commutation relation ,    -     cannot be given an analogous 

interpretation as the commutator ,   -     (Jordan 1927, Breitenberger 1985, Deck and 

Ozturk 1994). Rather, the analogy between the translational Descartes and the rotational 

observables is limited to the small values of the standard deviation    (Breitenberger 1985). 

Together with the assumption of the small rotations emphasized in Introduction, this 

limitation constitutes the basis of our considerations in the rest of this paper. 

Bearing this in mind, as well as the model proposed in (Suzuki and Tanimura 2001), in 

analogy with the equations (3.426)-(3.430) in (Breuer and Petruccione 2002), it directly 

follows for the planar rotator in external field,  ( ), the differential equations for the first 

and the second moments, as well as the correlation function for the   and    observables:  
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The symbol ―〈 〉      ‖ is the mean (average value) of the   observable for the system 

in the state   (which for     is always a mixed state represented by a ―statistical 

operator‖, i.e. by a ―density matrix‖,     ). The constant   is the so-called ―damping 

rate‖ originating from the influence of the environment with an Ohmic spectral density, at 

high temperature   and   is the Boltzmann constant. The ―I‖ stands for the moment of 

inertia of the rotator.  The prime in the subscript of the potential observable,  ( ), 

denotes the derivation over  :   ( )    ( )   . For simplicity, we further assume 

the time dependence of the observables without explicit writing.  

Hence for the harmonic potential with the circular frequency  , 
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the equations (1)-(5) take the following form: 
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Our objective is to accurately solve these equations and calculate the standard 

deviations, as well as the correlation function for   and   . The  application of the 

solutions to be presented below is constrained by the assumptions underlying the 

derivation of the Caldeira-Leggett equation that reads (Caldeira and Leggett 1983, Breuer 

and Petruccione 2002): 

 
  

  
   (high-temperature limit)                       (12) 

     (weak interaction with the environment). (13) 

3. SOLUTIONS OF THE EQUATIONS 

It is easy to obtain solutions to the equations (7) and (8) from which it directly follows: 

〈 ( )〉       .〈 ( )〉        
〈  ( )〉 

           
〈 ( )〉〈  ( )〉

  
      /, (14)   

 〈 ( )〉〈  ( )〉       . 〈 ( )〉〈  ( )〉         0
〈 ( )〉 

  
 〈 ( )〉   1       /, (15) 

〈  ( )〉
       (〈  ( )〉            〈 ( )〉        〈 ( )〉〈  ( )〉        ). (16) 

On the other hand, the equations (9)-(11) represent a set of coupled, first-order non-

homogeneous linear differential equations. Here we apply the standard matrix method of 

solving such a set of differential equations (Nagle et al 2011).  

      With a change in notation,  ( )  〈  ( )〉  ( )  〈  ( ) ( )   ( )  ( )〉  
〈       〉   ( )  〈  

 ( )〉         , we introduce the matrices (again, for 

simplicity, omitting the time dependence in what follows) 
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and for the non-homogeneous part: 
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so we can write (9)-(11) in the matrix form: 
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      Solving the eigenvalue problem for the matrix   gives the following eigenvalues 

2      .  √       /   .  √       /3 , 

which, with the use of the equation (13), implies the approximate values: 
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 The First and Second Moments for the Quantum Brownian Planar Rotator 75 

and the respective (approximate) eigenvectors: 
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From the equations (21)-(22), a particular solution,  ( ), due to the nonhomogeneous 

part is obtained by solving the matrix equation: 

 

(

 
 

     

     
(        )   (   ) 

     
(       )   (   ) 

    

 
       

    
 (    )   (    ) 

    
 (    )   (    ) 

   

        (    )    (    ) 
)

 
 

 ( )   .  (23) 

After integration of the solutions over time  , the result reads: 
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Hence the general solutions can be presented as:  
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with the unknown constants,      , for the homogeneous part of the equations (9)-(11). 

      By introducing the initial values,    (   )    (   )    (   ), the 

solutions for the constants       in the same order of the approximation equation (13), 

i.e. 
 

 
  , read: 
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After a straightforward but tedious calculation, substitution of the equations (28)-(30) 

into (22)-(27) and returning the original notation, we obtain the solutions to the equations 

(9)-(11) with the approximation equation (13), i.e. 
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4. THE STANDARD DEVIATIONS AND CORRELATION FUNCTION 

From the equations (14)-(17) and (31)-(33), we finally obtain the desired standard 

deviations and the correlation function: 
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In the asymptotic limit (   ), the equations (34)-(36) give (while neglecting the 

terms proportional to 
 

 
): 

         ( )  √
  

   , (37) 

          ( )     , (38)  

          ( )  √   . (39) 

5. DISCUSSION 

Nature’s biological motors serve as inspirations for the creation of small-molecule 

systems that undergo controllable motion. Molecular rotors and propellers are interesting, 

primarily because  of  their potential applications in such molecular machines (Kottas et 

al. 2005).  In order to construct a complex molecular machine, a number of building 

blocks are generally required, and a high degree of controlled relative motion between its 

parts is essential for the machine to produce the desired operation. By controlling the 

translational and rotational movements of the components in the machine, coupled with 

an inflow of external energy, it is possible to obtain the predetermined function. From all 

the above, it follows that the most important requirement for the successful application of 

molecular rotors in molecular machines is the controllability of the rotational movement.  

When considering molecular machines and their operation, it should be noted that the 

forces that control the movement of macroscopic objects have little relevance to molecular 

machines of nano dimensions. For large objects, inertial terms, which depend on the mass 

of the particle, dominate the motion. As the particle’s size decreases to or below the 

micrometer scale, viscous forces and Brownian motion become dominant while momentum 

and gravity become increasingly irrelevant (Jones 2008, Breuer and Petruccione 2002, 

Kottas et al 2005). Molecular rotors are subject to constant influence of Brownian motion 

(Kottas et al 2005), so it is preferred that they have the maximum possible robustness with 

respect to it. If all this is taken into account, the conclusion is that it can be very useful to 

find an expression for the standard deviation of the azimuthal angle and the canonically 

conjugate angular momentum of the molecular rotor which is under the influence of 

Brownian motion. This constitutes the main motivation for this paper as briefly emphasized 

in Introduction.  

For a free Brownian rotator out of any external field, the (exact) equation (3.441) in 

(Breuer and Petruccione 2002) gives in the asymptotic limit: 
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 , (41)  

          ( )  √   , (42) 

that concurs with the classical counterpart obtained from the solution of the corresponding 

Langevin equation (Breuer and Petruccione 2002) for the ―position‖ variable  .  

The equations (37)-(39) are the rotator-system counterpart of the well-known expressions 

(see the equation (3.424) in (Breuer and Petruccione 2002)) for the point-like Brownian 

particle in the external harmonic potential. While the equation (3.424) follows from an 
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approximate treatment of the Caldeira-Leggett master equation, our expressions (37)-(39) 

follow from the exact equations (1)-(5). A comparison of the equations (40)-(42) with the 

equations (37)-(39) clearly distinguishes the following physically substantial distinctions 

between the two models. First, there is no time dependence in the equation (37), thus 

emphasizing the existence of the stationary state, which does not exist for the free Brownian 

particle - see the equation (40). Second, for the angle-observable we obtain significantly 

smaller values due to the equation (13). This can be seen by re-writing the equation (37) as: 
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with the distinguished small terms and time independence of   ( ). 

Finally, the product of the standard deviations  
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where the last inequality follows from the equation (12). The equation (44) suggests that the 

stationary (asymptotically time-independent) state of the harmonic Brownian rotator is not of 

the minimal uncertainty, however revealing the possibility to assume that the final state is of 

the Gaussian form—compare to Section 3.6.2.2 in (Breuer and Petruccione 2002). These are 

important conclusions regarding the dynamics of the considered systems that can be used in 

some practical applications, for example in modeling a molecule as a rotator or as a gear like 

system, as key elements in natural and artificial molecular machines.  (Kottas et al 2005, 

Browne and Feringa 2006, Hutchinson et al 2014, Korobenko et al 2014). Our results directly 

extend towards investigating dynamical stability depending on the rotator’s geometrical size 

and shape for realistic physical and chemical situations. To this end, the ongoing research 

results will be presented elsewhere. 

6. CONCLUSION 

Our results provide explicit mathematical forms for the standard deviations for the 

azimuthal angle and the canonically conjugate angular momentum of a planar (one-

dimensional) quantum Brownian rotator placed in the external harmonic potential. In 

comparison with the well-known free Brownian rotator, we observe the existence of the 

stationary state in the asymptotic limit (   ), as well as significantly smaller standard 

deviations and the correlation-function for the rotator exerted to the external harmonic 

potential. The consequences of our findings for realistic physical and chemical situations will 

be presented in the sequel. 
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PRVI I DRUGI MOMENT ZA RAVANSKI KVANTNI BRAUNOV  

ROTATOR U SPOLJAŠNJEM HARMONIJSKOM POLJU 

Mi dajemo eksplicitne matematičke izraze za standardna odstupanja i korelacionu funkciju 

za azimutalni ugao rotacije i njemu kanonski konjugovani moment impulsa ravanskog (jednodi-

menzionalnog) kvantnog Braunovog rotatora u spoljašnjem harmonijskom potencijalu.Mi uočavamo da 

postoje neke fizički značajne razlike izmedju pomenutog modela i modela slobodnog rotatora koji je 

dobro istražen u literaturi. 

Ključne reči: otvoreni kvantni sistemi, kvantno Braunovo kretanje, kvantni rotator. 


