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Abstract: Using a basic approach to DNA mathematical models published by N. Kovaleva, L. Manevich 
in 2005 and 2007, and investigated by authors, a corresponding linearized model, we consider the double 
DNA (dDNA) as a system with elements with hereditary properties to obtain main chain subsystems of 
the double DNA. Analytical expressions of the eigen circular frequencies for the homogeneous linearized 
model of the dDNA chain helix are used to obtain corresponding eigen hereditary properties vibration 
modes. We identified two sets of eigen normal coordinates of the DNA hereditary properties chain helix 
for separation of the system into two uncoupled hereditary properties chains. The results open 
possibilities for different approach to explaining the behavior of the double DNA chain helix and of 
transfer of oscillatory signals trough the chains. Under certain sequences it is possible that oscillatory 
signal is transferred only through one main eigen chain. This may correspond to base pair order and 
translation process in complementary hereditary properties chains of DNA double helix in a living cell. 
Corresponding integral-differential equations are obtained and analyzed. Copyright © 2009 IFAC  
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1. INTRODUCTION 

DNA is a biological polymer that chemically consists of two 
long polymers of simple units called nucleotides, with 
backbone made of sugars and phosphate groups joined by 
ester bonds. One of four types of molecules called bases is 
attached to each sugar. Two bases on opposite strands are 
linked via hydrogen bonds holding the two strands of DNA 
together. It is the sequence of these four bases along the 
backbone that encodes information. The basic function of 
DNA in the cell is to encode the genetic material. For using 
that information to make proteins, DNA molecule has to 
interact with other molecules in the cell nucleus. DNA 
molecules can be considered to be a mechanical structure on 
the nano level. There are different approaches to studding the 
mechanical properties of the DNA molecule (experimental, 
theoretical modeling). The mechanical properties of DNA are 
closely related to its molecular structure and sequence, 
particularly the weakness of hydrogen bonds and electronic 
interactions that hold strands of DNA together compared to 
the strength of bonds within each strand. 

In the papers by Hedrih (Stevanović) K. and Hedrih A. (2008, 
2009,  2009a, 2009b and 2009c) using a basic approach to 
DNA mathematical models published by N. Kovaleva, L. 
Manevich (2005 and 2007), and investigated corresponding 
linearized model, we consider the double DNA (dDNA) as a 
system with elastics elements and with a fractional order 

elements as well as a analogous system with hereditary 
properties of elements to obtain main chain subsystems of the 
double DNA. Analytical expressions of the eigen circular 
frequencies for the homogeneous linearized model of the 
dDNA chain helix are used to obtain corresponding eigen 
fractional order creep vibration modes. We identified two sets 
of eigen normal coordinates of the DNA fractional order 
chain helix for separation of the system into two uncoupled 
fractional order chains. The visualization of the eigen 
fractional order creep vibration modes of the double DNA 
fractional order chain helix is presented.  

The results open possibilities for different approach to 
explaining the behavior of the double DNA chain helis and of 
transfer of oscillatory signals trough the chains. Under certain 
sequences it is possible that half number multi frequency 
oscillatory signals are transferred only through one eigen 
main chain. This may correspond to base pair order and 
translation process in complementary fractional order chains 
of DNA double helix in a living cell. Expressions for the 
kinetic and potential energy as well as energy interaction 
between chains in the double DNA chain helix are obtained 
and analyzed for a linearized model. Also, for the eigen main 
chains of the double DNA chain helix are defined and 
corresponding expressions of the kinetic and potential 
energies of these uncoupled main chains. By obtained 
expressions we concluded that no energy interaction between 
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eigen main chains of the double DNA chain helix. Time 
expressions of the main coordinates of the two eigen main 
chains are expressed by time, and eigen circular frequencies. 
Also generalized coordinates of the double DNA chain helix 
are expressed by time and eigen circular frequencies.  

A number of mechanical models of the DNA double helix 
have been proposed till today (see Fig. 1 and Refs. Arsuaga, 
J. and Other.(2002), Behe M.,and Other. (1981), Brukner and 
Other. (1994), Bryant and Other (2003), Frontali and Other 
(1979), Gore and Other (2006), Lu Tsai and Liaofu Luo, 
(2000), Lu Tsai and Liaofu Luo, (2000), Lance M. 
Westerhoff, Kenneth M. Merz Jr., (2006), Peck  and Other 
(1981), Tung and Harvey (1984), Westerhoff and Merz 
(2006)). Different models are focusing on different aspects of 
the DNA molecule (biological, physical and chemical 
processes in which DNA is involved). In a double DNA helix 
a localized excitation (breather) can exist which corresponds 
to predominant rotation of one chain and small perturbation 
of second chain using coarse-grained model of DNA double 
helix. In this model, each nucleotide is represented by three 
beads with interaction sites corresponding to a phosphate 
group, the group of sugar ring, and the base (see Ref. 
Kovaleva N., Manevich L., (2005)). N. Kovaleva and L. 
Manevich  (2007) point out that solitons and breathers play a 
functional role in DNA chains.  
 

      
a*    b*            c*  

Figure 1. a* “Toy mechanical” model of DNA by Jeff Gore, Zev 
Bryant, Marcelo (2006) b* The model scheme of a double helix 
on six coarse-grained particles (Torvik  and  Other (1984)); c*  
Fragment of the DNA double chain consisting of three АТ base 
pairs (Kovaleva and Manevich L., (2005)).   

In a model, the DNA backbone is reduced to the polymeric 
structure and the base is covalently linked to the center of 
sugar ring group, thus a DNA molecule with N nucleotides 
corresponds to 3N interaction centers. Starting from a coarse-
grained off-lattice model of DNA and using cylindrical 
coordinates, authors derive simplified continuum equations 
corresponding to vicinities of gap frequencies in the spectrum 
of linearized equations of motion. It is shown that obtained 
nonlinear continuum equations describing modulations of 
normal modes, admit spatially localized solitons, which can 
be identified with breathers. Authors formulated conditions 
of the breathers existence and estimate their characteristic 
parameters. The relationship between derived model and 
more simple and widely used models is discussed. The 
analytical results are compared with the data of a numerical 
study of discrete equations of motion (See Figure 1.b*). 

 
2. LINEARIZED MODEL AND SET OF THE DOUBLE 
DNA XHAIN HELIX OF THE EIGEN MAIN CHAINS 

 
Authors deal with the planar DNA model in which the chains 
of the macromolecule form two parallel straight lines placed 

at a distance h  from each other, and the bases can make only 
rotation motions around their own chain, being all the time 
perpendicular to it. Authors accepted as generalized 
(independent) coordinates 

1,kϕ  that are the angular 

displacement of the -th base of the first chain, and as 
generalized (independent) coordinates 

k
2,kϕ is the angular 

displacement of the -the base of the second chain. Here 
 is the axial moment of mass inertia of the -th base of 

the first chain;  is the axial moment of mass inertia of the 

-th base of the second chains (for the detail see Ref. 
Kovaleva and Manevich, 2005).  
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Parameter , 
ikK , 2,1=i characterizes the potential energy of 

interaction of the -th base with the ( )-th one along the 
-th chain. There are different estimations of rigidity. For the 

calculation we use the most appropriate value that is close to 
. By using the following notations 

(see Refs. [12-14]): 
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the corresponding analytical expressions of the square of ω  - 
eigen circular frequencies of vibration modes of separate 
main chains of linearized double DNA chain helix model, 
obtained by trigonometric method (see Refs. Rasković (1965) 
and Hedrih (Stevanović) (2006)) are:  
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where sϕ  and ,
rϑ nrs ,....,3,2,1, =  depend of the boundary chain 

conditions. 
 

3. STANDARD LIGHT HEREDITARY ELEMENT 
 
Light standard coupling element of negligible mass in the 
form of axially stressed rod without bending, and which has 
the ability to resist deformation under static and dynamic 
conditions. Light standard hereditary element for which the 
constitutive stress-strain relation for the restitution force as 
the function of element elongation is given by integral 
member in the form  

 ]P           (3) ( ) ( ) ( ) ( ) ( ) ( )[ ][ txtxcdxttxct
t

IR −−=⎥
⎦

⎤
⎢
⎣

⎡
−−= ∫ 0

0
0 τττ-

where ( ) ( )τ

σ

στ
−−−

=−
t

ne
nc

cct
1

0R is relaxation kernel, , and n c c~  

are coefficients of the rigidity, momentaneous and prologues 
one and tome relaxation ,

n
1

=β is coefficient of the element 

relaxation (for detail see Monograph Goroško and  Hedrih 
(Stevanović) (2001) and Ref. Hedrih (Stevanović) (2006) and  
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integral operator.   

     



 
 

 

4. THE DOUBLE DNA HEREDITARY CHAIN HELIX MODEL 
ON THE BASIS OF KOVALEVA-MANEVICH’S DNA MODEL 

 
For the double DNA hereditary chain model on the basis of 
the linearized Kovaleva-Manevich‘s DNA model (see Refs. 
Kovaleva-Manevich (2005) and (2007)), we accept the two 
chains as they are presented in Figure 2. in the form of the 
double chain system containing two coupled multi pendulum 
subsystem, in with corresponding material particles of the 
corresponding multi-pendulum chains are each two inter 
coupled by one standard light hereditary element (see Refs. 
Gorosko and Hedrih (Stevanović) (2001)).  
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a*       b* 

Figure 2. Double DNK fractional order (or/and hereditary)  chain 
helix in the form of multi-pendulum model with free (a*) and 
fixed (b*) ends. 

 
Then we can use a system of coupled linear differential 
equations (see Refs. [16], [12], [13], [14]) extended by 
members containing integral operators in the form (5)-(6). 
Then we can write a corresponding system of coupled 
integral-differential equations for the homogeneous double 
DNA hereditary chain helix in the form: 
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 as our intention is to use previous double DNA hereditary 
chain model for the case of the homogeneous system 
parameters we take into account that: = =K. 

By using change of the generalized coordinates 
σ,,1kK σ,2,kK

1,kϕ  and 

2,kϕ  for -th bases of both chains in the DNA model into 

following new 

k

kξ  and kη  by the following dependence: 

2,1, kkk ϕϕξ −=  and  2,1, kkk ϕϕη += , previous system of 
differential equations (6) obtains the following form: 
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First series (6) of the previous system of integral-differential 
equations is decoupled and independent in relation to the 
second series  (11) of integral-differential equations. Then we 
can conclude that new coordinates of kξ  and kη  are main 
coordinates of double DNA hereditary chains and that we 
obtain two fictive decoupled eigen hereditary, different, 
chains of the double DNA hereditary chain helix model. This 
is the second fundamental conclusion as an important 

property of the hereditary order homogeneous model of 
vibrations in a double DNA hereditary homogeneous helix.   
Systems of integral-differential equations (10)-(11) contain 
two separate subsystems of integral-differential equations 
expressed by coordinates of kξ  and kη  which are main 
coordinates of eigen main chains of a double DNA fractional 
order chain helix and separate DNA hereditary model into 
two independent hereditary chains. We can see that there are 
full mathematical analogy and phenomenological mapping 
between two models: a double DNA fractional order chain 
helix model and a double DNA hereditary chain helix.  
 
5. THE MAIN PARTIAL HEREDITARY OSCILLATOR OF THE 

DOUBLE DNA HEREDITARY CHAIN HELIX MODEL 
 
By using system the (6)-(7) of uncoupled integral-differential 
equations and as corresponding subsystems of eigen main 
chains of the corresponding model of double DNA hereditary 
chain helix vibrations we can obtain corresponding main 
coordinates s,ςζ  and r,ηζ ,  and 
corresponding double subsystems of the main partial 
hereditary oscillators described by the following uncoupled 
integral-differential equations containing each only  one 
normal coordinate from the two subsets  

nsr ,...,3,2,1, =

s,ςζ  and r,ηζ : 
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In the previous systems (8)-(9) square of the eigen 
frequencies,  and  of the linearized systems are 
defined by expression (2). 

2
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6. SOLUTION OF THE MAIN PARTIAL HEREDITARY 

OSCILLATOR 
 
For to obtain solutions of the previous derived integral-
differential equations (8) and (9), all equal mathematical 
type: 
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To determine by unique way a solution of the previous 
integral-differential equation it is necessary to define the 
initial condition. Initial condition is possible to express by 
following: 
 ( ) 00 yy =  ( ) 00 yy && =         (11) 
In these cases initial conditions are defined in classical way 
by initial position ( )0y and initial velocity ( )0y&  of the 
material particle.  
History of the rheological standard hereditary element 
loading in these integral-differential equations is taken into 
account by integral members in the period of integration 
( )0,∞−   For solving differential equation (11) in every case, 
initial conditions are defined by three initial conditions 

( )0y , ( )0y&  and ( )0y&& . In these cases initial conditions are 
defined by initial position , initial velocity ( )0y ( )0y&  and 
initial acceleration ( )0y&&  of the material particle. Last initial 
condition initial acceleration  of the material particle is ( )0y&&

     



 
 

 

directly defined from stress-strain state of the standard 
hereditary (rheological) element on the basis of element 
loading history. Particular examples to obtain or to define the 
third initial condition in accordance of the  different loaded 
element history  are presented in the Refs. Goroško and  
Hedrih (Stevanović) K., (2001) and (2008). In these cited 
Refs. a detailed schema for to obtain initial conditions of the 
hereditary oscillator in the case of the impulse external 
excitations is presented.  
  
6.1. Estimations of the frequency, decrement and coefficient 
of the rheology  of the hereditary oscillator. 
  
Characteristic equations for differential equation (10) of 
oscillations of the partial hereditary oscillator have the 
following form (see Refs, Goroško and  Hedrih (Stevanović) 
K., (2001) and (2008)): 
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Lets present the roots of the previous equation in the complex 
form 
 00 δλ −=  ,  ωδλ i±−=2,1         (12) 
and after their introduction in the characteristic equation (11) 
we obtain: 
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After compurgation between corresponding coefficients of 
the corresponding exponents of equations (11) and (13), we 
obtain relations between kinetic parameters of the hereditary 
oscillator in the following forms: 
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In the first approximation, taking into account that ratio 

( )2ω
δ is small, the kinetic parameters ωδδ ,,0 of the 

hereditary oscillator  in the first approximation are obtained 
in the forms: 
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By using expressions (18) of the first approximation and put 
them in the expressions (15)-(17),  the kinetic parameters  

ωδδ ,,0  of the hereditary oscillator  in the second  
approximation are obtained in the forms: 
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By this way, values of hereditary oscillator coefficients 
δδ ,0  and  circular frequency ω are defined by expressions 

(19)-(21) with high degree of precision. 
By using previous considerations and approximation of the 
standard hereditary oscillator coefficients  δδ ,0  and circular 
frequency ω  defined by expressions (19)-(21), the solution 
of the equation (10) for the standard hereditary oscillator we 
can write in the following form: 
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for initial conditions , ( ) 00 =y ( ) 00 =y& ,  

( ) ( ) 2
00~0 ωsfPy =+&& , where ( ) ( )00~ 2

0 yP ω= , corresponding to 
applied heavy material particle with force (weight) 

scfmg = and with zero initial velocity of the hereditary 
oscillator material particle correspond to the unstressed and 
non-deformed natural state of the hereditary element in the 
hereditary oscillator.  
 

7. KINETIC PARAMETERS OF THE EIGEN MAIN 
HEREDITARY OSCILLATORS OF DOUBLE DNA 

HEREDITARY CAIN HELIX VIBRATIONS 
 
By using expressions (19)-(21), two subsets of the kinetic 
parameters corresponding to first eigen main 
chain ( ) ( ) ( )sss ,,,0 ,, ξξξ ωδδ   and to second eigen  main chain  

( ) ( ) ( )sss ,,,0 ,, ηηη ωδδ of the eigen main hereditary oscillators 
(8)-(9) of double DNA hereditary chain helix vibrations in 
the second  approximation are obtained in the following 
forms: 
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B* Second subset: 
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8. CONCLUDING REMARKS 

In the end, we can conclude that new coordinates of kξ  and 

kη  composed by generalized coordinates vy the way 

2,1, kkk ϕϕξ −=  and 2,1, kkk ϕϕη +=  are main coordinates of the 
eigen main chains of the double DNA hereditary chain helix 

     



 
 

 

and that it is possible to obtain two fictive decoupled and 
separated eigen single hereditary chains as two subsystems of 
the double DNA hereditary homogeneous chain helix model. 
This is the first fundamental conclusion and an important 
property of the hereditary model of vibrations in a double 
DNA hereditary helix. Considered as a hereditary mechanical 
system, DNA molecule as a double hereditary helix has its 
eigen hereditary vibration modes and that is its characteristic. 
Mathematically, it is possible to decuple it into two chains 
with their eigen modes closest to the eigen modes of the 
linearized models of main chains with corresponding sets of 
the circular frequencies which are different. This may 
correspond to different chemical structure (the order of base 
pairs) of the complementary chains of DNA. We are free to 
propose that every specific set of base pair order has its eigen 
circular frequencies and it changes when DNA chains are 
coupled in the system of double helix. DNA as a double helix 
in a living cell can be considered as nonlinear system but 
under certain condition its behavior can be describe by linear 
dynamics.  
Then, analytical expressions of the square of  and   - 
eigen circular frequencies of the vibration modes of the 
separate chains of the homogeneous double DNA chain helix 
are obtained. By using these results it is easy to consider 
these values of the system  and    - eigen circular 
frequencies of free vibrations as series of resonant 
frequencies under external multi frequencies excitations, and 
also possibilities for the appearance of dynamical absorption 
phenomena and find explanation with real processes in the 
homogeneous double DNA ideal-elastic/fractional order/ 
hereditary chain helix. Next consideration is focused on the 
small nonlinearity in the double DNA chain helix vibrations 
and rare nonlinear phenomena such as resonant jumps and 
energy interactions between nonlinear modes.  
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,sξω 2

,rηω

The analysis showed that there is no transfer of energy 
between main chains of the double DNA chain helix 
considered as a hereditary chain helix, and that transfer of 
energy appears only between material particles in the 
corresponding subset of the corresponding main chain. These 
results may be important for future application in theoretical 
and experimental medical investigations. As we take into 
account a hereditary no conservative model of the double 
DNA chain helix, then it is possible to conclude that main 
chains oscillate with no constant total mechanical energy and, 
also, with different initial main chain total energy values, as 
well as with different set of the eigen frequencies.  Under the 
external one frequency excitation,  in only in one main chain 
is possible that resonance regime appear, but also there are 
possibilities for dynamical absorption existence.  

Transcription process of DNA is well described at 
biochemical level. During transcription part of double DNA 
is unzipped, and only one chain helix is used as a matrix for 
transcription. For better understanding DNA and its function 
it is necessary to consider its behaviour through bioelectrical 
and mechanical point of view. If we know what is happened 
to DNA at biomechanical, bioelectrical and biochemical level 
during transcription our understanding of its function will be 
more complete. This may open a wide array of possibilities of 
using DNA as an essential structure in technical devices.  

Also, by use modification of the linearized model by 
introducing standard light elements  with constitutive relation 
on the coupled fields with thermo modifications is possible to 
introduce a  hybrid model of the double DNA chain helix 
with analysis of the more complex process of the transfer 
energy and corresponding analogy this model with real DNA 
system. 
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APPENDIX - NOMENCLATURE 

DNA – Deoxyribonucleic acid (DNA) 

1,kϕ and 2,kϕ  [ ] -  generalized coordinate – angles of the k -

th base of the first  and second chain of the double DNA chain helix;  

rad

1kJ ,
 and  [ ]- is the axial moment of mass inertia of the -

th base of the first and second chain of the double DNA chain helix; 
2,kJ 2kgm k

1,kϕ& [rads-1] - angular velocity of the -th base of the first chain of 

the he double DNA chain helix;   

k

2
, αα rm=1kJ , 2  [ ] -  the base pair the axial moments 

of mass inertia ; 
2, ββ rm=1kJ 2kgm

αm  [ ]- the value of the base mass , [ ] - the length kg αr m

ikK , , 2,1=i  [KJmol-1]- parameters characterize the energy of 

interaction of the -th base with the ( )-th one along  k 1+k
the i -th chain .  2,1=i

1]-KJmol[106 3
, ×== KK ik

- for the calculation that the most 

appropriate value is close / 

kξ ,  kη  [ rad ], nk ,.....,3,2,1=  - main orthogonal coordinates 
of the eigen main chains of the double DNA chain helix; 

2,1, kkk ϕϕξ −=     and  , 2,1, kkk ϕϕη += nk ,.....,3,2,1=  

2αβω and 1αβω  [ ] - are frequencies of rotational motions 

of the bases,  in similar and opposite directions accordingly, of the 
-th base of the first chain of the double DNA chain helix; 

1sec−

k
KKK kk == 2,1,  - for the case of homogeneous double DNA 

chain helix; 
 and  [ ], 2

,sξω 2
,rηω 2sec− nrs ...,4,3,2,1, = - set of the  eigen circular 

frequencies of the first and second eigen main chain of the 
homogeneous linear double DNA chain helix; 

n

 ( )
2

,
~

sξω  and ( )
2

,
~

rηω , nrs ...,4,3,2,1, =  -two subsets of the set of the 
homogeneous double DNA chain helix frequencies in the second 
approximation; 

( ) ( ) ( )sss ,,,0
~,, ξξξ ωδδ  and ( ) ( ) ( )sss ,,,0

~,, ηηη ωδδ - kinetic parameters 
corresponding to first eigen main chain  and to second eigen main 
chain  of the corresponding two subset s of the eigen main 
hereditary oscillators of the homogeneous double DNA chain helix 
in the second approximation. 

     


