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Abstract  
 

During uniform distribution of chromosomes throughout cell division process an important role 

plays complex machinery called mitotic spindle. Biomechanics of mitotic spindle is very complex 

involving specific forces generated in the- and outside the spindle. Elongation speed of mitotic 

spindle, as well as elongation length of mitotic spindle during anaphase B mainly depends on cell 

type and conditions in which cell division take place. There are several theoretical models of 

anaphase B: slide and flux or elongate model, slide and cluster model, and cell size dependent 

spindle elongation model. The aim of this work was to consider a mitotic spindle as a system of 

coupled oscillators and to analyze the conditions for sister chromatid separation in anaphase trough 

the biomechanical oscillatory model of mitotic spindle. The basic concept of biomechanical model 

of mitotic spindle is given: centrosomes are presented as mass particles that represent two 

rheonomic centers of oscillations. Microtubules are presented with standard light visco-elastic 

element. Sister chromatids are represented as mass particles that are interconnected with standard 

light massless elastic spring. Homologue chromosomes have equal masses and different 

chromosomes have different masses. In the case of excitation of reonomic centers of oscillations 

each with a single frequency, two differential equations of motion for each pair of homologue 

chromosomes are given. An expression for total mechanical energy of oscillating pair of 

homologues chromosomes is also given. We assume that resonance could be a condition for 

disconnection of homologue chromosomes that is desirable event in anaphase, but also resonance 

could also be the condition (form the mechanical point of view) for disconnection between 

kinetochore and microtubule which, when occurs, leads to aneuploida-non equal distribution of 

genetic material between cells. Conditions for resonance occurrence are analyzed. 
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1. Introduction 

 

Mechanism of chromosomes movements within cell during cell division requires precise 

functioning of a complex structure named mitotic spindle. Biomechanics of mitotic spindle is very 

complex involving specific forces generated in the- and outside the spindle [1]. The way 

chromosomes move within the cell is called functional genomic architecture and include 

chromosomal territories (CTs). Weise et al [2] postulate that functional genomic architecture is not 

only present in interphase but also in metaphase stage of cell division cycle. These nuclear CTs 

show a functional character in spatial, temporal and cell type specific organization [2]. Several 

models exist to explain this organization. One of the models predicts central location of gene rich 

chromosomes within cell nucleus and gene-poor chromosomes located in a zone close to the 

nuclear edge [1, 2]. Different chromosomes have different chromatid separation times: some 

chromosomes begin anaphase movements toward the spindle poles before others (e.i. the 

chromosomes with the largest blocks of pericentric heterochromatin are the last to separate) [3]. 

This specific spatial organization of mitotic spindle observed in many cell types [4] still need an 

exact explanation. “The separation of sister chromatids during anaphase consists of two distinct 

processes: Anaphase A, the movement of chromosomes toward spindle poles via shortening of the 

connecting fibers, and anaphase B, separation of the two poles from one another via spindle 

elongation” [5]. Elongation speed of mitotic spindle as well as elongation length of mitotic spindle 

during anaphase B mainly depend on cell type and conditions in which cell division take place [6]. 

There are several theoretical models of anaphase B: the slide and flux-or-elongate, the slide-and-

cluster model and the cell-size dependent spindle elongation model [6]. Anaphase B spindle design 

is different in different organisms [6].  

Poleward movement during anaphase A is mostly but not entirely unidirectional-it exhibits non-

linear oscillatory behavior.-generally it the time/distance curve of kinetochore directional 

instability during anaphase A has declining shape with local min and maximum [5]. Many protein 

structures are involve in regulation of mitotic spindle proper functioning: Usp16 (ubiquitin specific 

peptidase) regulates the kinetochore localization of Plk1 to promote proper alignment and timely 

separation of chromosomes. “Plk1 is an important mitotic regulator that play a critical role in 

regulating chromosome alignment. Cdk1 phosphorylates Usp16 and enhances its binding to Plk1” 

[7].  

There are some age related changes in proper functioning of mitotic spindle: “Inter-kinetochore 

distance in bivalents during metaphase I increase with maternal age“[5]. “In human eggs, 

aneuploidy increases with age and can result in infertility and genetic diseases. Studies in mouse 

oocytes suggest that reduced centromere cohesion and spindle assembly checkpoint (SAC) activity 

could be at the origin of chromosome missegregation. Little is known about these two features in 

humans“ [8]. Castro et al [8] showed that inter-kinetochore distances of bivalent chromosomes in 

human eggs, strongly increase with age. According to their results BUB1 and BUBR1 proteins 

localize at the kinetochore with a similar temporal timing than in mitotic cells and in a MPS1-

dependent manner. Their results suggest that mitotic spindle checkpoint is inactivated when 

centromere cohesion is lost in MI (meiosis I) and consequently cannot inhibit premature sister 

chromatide separation. The kinetochore localization of BUB1 and BUBR1 proteins decreases with 

the age of the oocyte donors. This could contribute to oocyte aneuploidy” [8].  

“The Spindle assembly check point–SAC is a safeguard mechanism to avoid premature 

chromosome segregation before correct kinetochore binding to the spindle. In human mitotic cells, 

SAC activity delays anaphase onset until all chromosomes are correctly attached to the spindle. 

Without SAC, mitosis is accelerated and chromosome missegregation occurs” [8]. 

The aim of this work was to give the basic description of the oscillatory model of mitotic spindle, 

to analyze and discuss conditions for obtaining resonance as potential mechanism for homolog 

chromosomes separation trough this model. To find the conditions for resonance to occur as a 

potential mechanism for homolog chromosome separation we use biomechanical oscillatory model 
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of mitotic spindle [9]. Model is developed for animal cells. Proposed oscillatory model represents 

different approach from existed anaphase models of mitotic spindle. The purpose of the oscillatory 

model of mitotic spindle is to explain behavior and movements of chromosomes during anaphase 

of the cell division process from the biomechanical point of view on a simplified way. Complex 

molecular structures like microtubules, kinetochores, centrosome are represent with simple 

mechanical structures in order to explain their oscillatory movements.  

As aging causes a loss of meiotic chromosome cohesion [8], the proposed model could be suitable 

for explaining age related aberrations in mitotic spindle functioning. 

 
 

2. Basic concept of the biomechanical oscillatory model of mitotic spindle 

 

Mitotic spindle is considered as a system of coupled oscillators. The coupling is realized through 

centrosome. Centrosomes are presented as mass particles on the cell poles and represent two 

rheonomic centers of oscillations. Microtubules are presented with standard light visco-elastic 

fractional order element. Homologues chromosomes are represented as mass particles that are 

interconnected with standard light linear elastic element. Homologue chromosomes have equal 

masses but masses of different chromosomes could be different. Elastic spring that interconnects 

mass particles represents centromere structure. See Fig. 1. Assumptions of the model: rheonomic 

centers of oscillation with masses M1 and M2 generate oscillations and oscillate along vertical axis. 

Oscillations are transfer trough standard light visco-elastic element to homolog chromosome – 

mass particle and its homologue pair. Structure of oscillatory model of mitotic spindle is 

horizontally symmetric like mirror image. During anaphase A homologues chromosomes are 

disconnected (elastic spring that interconnects mass particles breaks) and homologues are moving 

in oscillatory manner to the corresponding centrosomes - rheonomic oscillatory centers. Breakage 

of elastic springs are desirable breakage thus this ensure equal distribution of genetic material in 

sister cells. If the breakage occurs in visco-elastic element (microtubule) aneuploidia occurs - the 

whole chromosome moves to the opposite pole of the cell and that cell will has one chromosome 

more and the other cell will has one chromosome less and all gens that are coded on that 

chromosome will lack in one cell and will be duplicated in another cell with corresponding 

consequences in both cells.  

Component velocities of homologue chromosomes/material particles are: relative velocity 

for upper 
gikx and lower 

dikx  homologues chromosomes in direction of standard light visco-elastic 

element and components of transfer velocity: in collinear 
gikgOy cos1

  and 
dikdOy cos1

  and in 

orthogonal 
gikgOy sin1

  and
dikdOy sin1

  directions of standard light visco-elastic element, see Fig 2. 

We assume that angles between direction of microtubule-standard light visco-elastic element and 

vertical axis that interconnect opposite rheonomic centres gik  and dik  are relatively constant. 

Square of absolute velocity of one homologue chromosome/ k -th material particle in each subset –

are (see Refs.[10, 11, 12]): 

 

   21

2

1

2 sincos2 gikgOgikgOgikgik yyxv    ,        22

2

2

2 sincos dikdOdikdOdikdik yyxv     (1) 

Ni ,..,2,1  

In human cells 24N . 

Approximate value of elongation of standard light linear elastic element that interconnect pairs of 

homologues chromosomes are: 

 

    dikdikgikgikdOgOik xxyy  sinsin11  , Ni ...2,1     (2) 

with assumption that inclination of the standard light linear elastic element could be neglected. 
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In the case of kinematical excitation of rheonomic centers of oscillations (centrosomes) each with 

single frequency, differential equations of motion for each pair of homologue chromosomes are 

derived.  

 

 
Fig. 1. Biomechanical model of mitotic spindle in forced regime of oscillations with different distribution of 

chromosomes with different masses. Rectangles denote visco-elastic elements that represent microtubules. 

Elastic springs denote connection between pair of homologues chromosomes-kinetochore complexes. 
 
 

 
Fig. 2. General oscillatory model of mitotic spindle with inertia elements on the poles of the cell, that 

represent centrosomes. Only two pairs of homologues chromosomes are presented. Kinematical excitation of 

mitotic spindle occur in the rheonomic centers in vertical axis with synchronous or asynchronous kinematic 

excitation.  
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When kinematic excitation of rheonomic centers with masses 1M  and 2M occurs, their 

velocities are: 11 gOO yv  , 22 gOO yv  . 

Total kinetic energy ikK ,E of ik -pair of homologues chromosomes/material particles including 

kinetic energies of centrosome caused by rheonomic excitation coupled with standard light visco-

elastic element under angle ikdikgik    with direction of kinematic excitation is (see Refs, 

[10-13]): 

 

         

2

22

2

11

2

2

2

2

2

1

2

1,

2

1

2

1

sincos
2

1
sincos

2

1

gOgO

dikdOdikdOdikdikgikgOgikgOgikgikikK

yMyM

yyxmyyxm







 E
(3) 

           

with assumption that rheonomic centers of excitations are equal. 

Expression of potential energy PE  of two standard visco-elastic and one standard light elastic 

elements containing in each of the sub-system with one pair of coupled two mass particles and 

rheonomic center is: 

 

    221

22

,,,

sinsin
2

1

2

1

2

1
dikdikgikgikdOgOikdikdikgikgikP

ikPEdikPgikPP

xxyycxcxc  



E

EEEE

  (4) 

 

gikx and dikx  are independent generalized coordinates, 1gOy  and 2gOy  are rheonomic coordinates 

–kinematical mobility of rheonomic centers, gikc , dikc  and ikc  are rigidities of standard light 

visco-elastic and elastic elements – coupling between pair of mass particles (see denotation on 

Fig.2. and Refs. [11, 12] ). 

Standard light fractional order creep element for which the constitutive stress-strain relation for the 

restitution force as the function of element elongation is given by fractional order derivatives in the 

form (see Refs [14, 15] ): 

       txctxctP t


 0

       (5) 

where  
t

 is operator of the th  derivative with respect to time t in the following form: 

       
    

 
 

 






 






 d

t

x

dt

d
tx

dt

txd
tx

t

t 



0

1

1       (6) 

where cc ,0  are rigidity coefficients – momentary and prolonged one, and   a rational 

number between 0 and 1, 10  . 
Generalized function of fractional order dissipation of energy is in the form (see Refs [14, 15]): 

     22

,,,
~

2

1~

2

1
diktdikgiktgikdikWgikWikW xcxc   PPP     (7) 

Considering the coupling of homologues chromosomes in the proposed mechanical oscillatory 

model of mitotic spindle, in general case, we will have system of N coupled subsystems of 

ordinary fractional order differential equations that describes motions of the material particles in 

the system in forced oscillatory regime. If we expressed properties of visco-elastic elements with 

constitutive relation in fractional order derivatives by generalized function of fractional order 

dissipation of subsystem energy by (7), we will have system of fractional order differential 
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equation, obtained by extended Lagrange’s differential equations in the following form (see Refs, 

[14, 15] ): 

 

 
   gik

gikt

W

gik

PEP

gik

K

gik

K X
xxxxdt

d



































PEEEE


,     (8) 

 
   dik

dikt

W

dik

PEP

dik

K

dik

K X
xxxxdt

d






























PEEEE


, 2,1i ,  Nk ,...,4,3,2,1   (9) 

 

For human cells 24N . By use previous extended Lagrange’s differential equations in the 

following matrix form (8) and (9) for generalized coordinates gikx  and dikx , we will obtain system 

with 24 sub-systems, each with one pair of the ordinary fractional order differential equations in 

the following form: 

 

           0~sinsinsincos 111  giktgikgikdikdikgikgikdOgOikgikgikgikgOgikgik
xcxxyycxcyxm

dt

d   

           (10) 

           0~sinsinsincos 112  diktdikdikdikdikgikgikdOgOikdikdikdikdOdikdik
xcxxyycxcyxm

dt

d   

    2,1i ,  Nk ,...,4,3,2,1      (11)  

 

For human cells 24N . gikc~  and dikc~ are rigidities from fractional properties of energy 

dissipation,  gikt x
and  dikt x

 are fractional derivatives for upper and lower visco-elastic 

element that interconnects homologue chromosomes with rheonomic center of oscillations.  

 

3. Condition for resonance as potential mechanism for homolog chromosomes separation  

 

Pairs of coupled fractional order differential equations could be solved independently from other 

coupled pairs of the mitotic spindle oscillatory system. Expressions for equations (10) and (11) 

could be rewritten in the form: 

 

      

  ththh

xxxx

dgikgikggikgikgikg

giktgikdikgikdikgikgikgikgikgikgik





cos
~~

cos
~

~sinsinsin

,0

2

,0

2

,0

2

22222



 




,       (12) 

 

      

  ththh

xxxx

gdikdikddikdikdikd

gikdikgikdikgiktdikdikdikdikdikdik





cos
~~

cos
~

sinsin~sin

,0

2

,0

2

,0

2

22222



 




 (13) 

where the following notations are introduced: 

 
gik

gik

gik
m

c
2 ,   

gik

gik

gik
m

c~~2  ,  gikgogik yh cos,0   

dik

dik
dik

m

c
2 ,  

dik

dik
dik

m

c~~2  , dikdodik yh cos,0   
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gik

ik
gik

m

c
2


, 

dik

ik
dik

m

c
2


,   

gikggik yh sin
~

0,0  ,  gikdgik yh sin
~~

0,0   

dikddik yh sin
~

0,0  ,  dikgdik yh sin
~~

0,0       (14) 

 

where g  and d , are frequencies of forced oscillations of kinematic excitations of centrosomes 

with masses 1M  and 2M  amplitudes 0gy  and 0dy . Rheonomic coordinates of kinematic 

excitation are in the form:   tyty gggO  cos01  and   tyty gddO  cos01 . 

From pairs of coupled differential equations (12) and (13) in which are not visible explicate, but 

we can conclude that 1M  and 2M do not have direct influence on dynamics of coupled 

homologues chromosomes. Influence is indirectly via generalized forces 2gQ  and 2dQ  that are 

obligated for kinematic excitation of the centers. These generalized force for rheonomic 

coordinates )(1 tygO  and  tydO1 , we can determine by following Lagrange’s equations: 

 
  1111

1

gOt

W

gO

PEP

gO

K

gO

K
gO

yyyydt

d
Q



































PEEEE


    (15)

 

 
  1222

2

dOt

W

dO

PEP

dO

K

dO

K
d

yyyydt

d
Q




























PEEEE


    (16)

 

For the case when microtubules are approximated with standard light ideally elastic elements, 

fractional derivatives in expressions (12) and (13) are omitted. In this paper, we consider 

linearized case when in system of differential equation (12) and (13), we take that 0~2 gik  and 

0~2 dik -we take into consideration these differential equations without terms 

  giktgik x 2~  and   giktdik x 2~ . Than particular solutions of modified ordinary differential 

equations (12) and (13) for the case of single frequency forced kinematical excitations of each 

centre of centrosomes with masses 1M  and 2M , are in the two-frequency form: 

tDtDx dgikggikPgik  cos
~

cos       (17) 

 tDtDx ddikgdikPdik  cos
~

cos       (18) 

Introducing proposed particular solutions (17) and (18) and their second derivatives into 

differential equations (12) and (13) we got system of differential equations that could be transform 

in the system of coupled non-homogeneous algebraic equations with unknown amplitudes of 

proposed particular solutions in the following forms: 

 

      gikgikgikgdikgikdikgikgikggikgikgik hhDD ,0

2

,0

222222 ~
sinsinsin 


  

     gikgikdikgikdikgikgikdgikgikgik hDD ,0

222222
~~~

sinsin
~

sin 


  (19) 

     dikdikgikdikgikdikdikgdikdikdik hDD ,0

222222 ~
sinsinsin 


  

     





  dikdikdikdgikdikgikdikdikddikdikdik hhDD ,0

2

,0

222222
~~~

sinsin
~

sin 


 (20) 

this coupled system could be further decupled into to independent subsystems (19) and (20). 
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Determinant of the sub-system (19) is in the form: 

 

    
     0

sinsinsin

sinsinsin
22222

22222







gdikdikdikdikgikdik

gikdikgikggikgikgik

ik







                       (21) 

and have to be different than zero, for obtaining finite value of amplitudes and proposed particular 

solutions (17). 

For application of Cramer’s rule for solving non homogeneous algebra equations (17), we 

compose two determinants by substitution into determinant of the system (21), successively, first 

and second column by column composed by terms in right hand side of the algebra equations of 

the system (19), and we obtain the following determinants: 
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Unknown amplitudes of proposed particular solution (17) are now determined: 

ik

ik
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
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
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The analog could be obtained for the second pair of the unknown amplitudes of proposed 

particular solution (18) are now determined: 

 

ik

ik

gikD
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
 ~

~
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ik

ik
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      (25) 

Particular solutions of linearized ordinary differential equations (12) and (13) in proposed form 

(17) and (18) are in the form: 

tttDtDx d

ik
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 tttDtDx d
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3. Discussion 

 

Now, we can discuss different conditions for different combinations of dynamical absorption and 

resonance. When determinant of one system is 0ik  or 0
~

ik , we can obtain resonant 

frequencies of kinematic excitation of rheonomic centers with masses 1M  or 2M . When one of 

the amplitudes 0
,1







ik

ik

gikD  or 0
,2







ik

ik
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~
~ ,1



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ik
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~
~ ,2







ik
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dikD  is 

equal to zero, or determinants 0,1  ik  and 0,2  ik  or/and 0
~

,1  ik , 0
~

,2  ik , appear 

dynamical absorption of corresponding amplitude and corresponding forced mode with 
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corresponding force frequency, and corresponding material particle-homologue chromosome 

occurs. This could be explanation, from theory of oscillations, for the mechanism way movements 

of some pairs of homologues chromosomes are postponed while other pairs of homologues are not 

in the right position in equatorial plain. 

Comparing determinant of the system for free oscillations with determinant for the sub-

system for obtaining amplitudes of particular solutions for forced oscillations (determinant for the 

system of free oscillations should be equal to zero and determinant for sub-system for forced 

oscillations should be different from zero) we can conclude that for each of two frequencies of 

kinematic excitation of kinematic centers with masses 1M and 2M of mitotic spindle there are two 

resonant frequencies and resonance occur when external kinematic excitation frequency is equal to 

eigen circular frequency, expressed in the form: 

 
2

,

2

sig  , 
2

,

2

sid  ,  2,1s        (28) 

 

According to the (2), dilatation of standard light linear elastic element that interconnects 

homologue chromosomes and particular solutions (26) and (27) are important for analysis of 

elastic and microtubule elements breakage. 

When resonance occurs expressions (2), (26) and (27) tends to infinity in resonance time period 

than one of the circular frequency of kinematic excitation is equal to the one of eigen circular 

frequency of the coupled homologues chromosomes in the simplified system of two pairs of 

coupled homologues chromosomes. 

If dilatation  
criticalik  according to the (2) reaches, in resonant state, critical value for 

disconnection of pair of homologues chromosomes-material particles before the critical value of 

breakage of opposite microtubules-both dilatations  
criticalPgikx  and  

criticalPdikx  ( (26) and (27)) is 

reached, homologues chromosomes are separated and move to the corresponding centrosome. In 

the case when one of the dilatations  
criticalPdikx  or  

criticalPdikx  reaches the critical value of 

breakage, in resonate state, before  
criticalik  is reached, occurred aneuploidia and aberrant 

spindle assembly-an undesirable and unfavorable state for equal distribution of genetic material in 

sister cells. 

Which of this scenario will occur depends on resonant frequencies of excitation of rheonomic 

centers, angles between microtubules (standard light visco-elastic element) and centrosome 

(rheonomic center of excitation) as well as of rigidities and chromosomal masses in oscillatory 

system of mitotic spindle. 

For specific conclusion, multi-parametric analysis for conditions for resonant states for one of 

these scenarios, multi-parametric numerical experiment is needed.  

As aging causes a loss of meiotic chromosome cohesion, which can explain premature disjunction 

of sister chromatids [8], the proposed model could be suitable for explaining age related 

aberrations in mitotic spindle. 

 

 

4. Conclusions 

 

Oscillatory model of mitotic spindle is presented. Conditions for resonance as a mechanism for 

homolog chromosomes separation in anaphase is analyzed and discussed. Compare to the 

complicated and complex molecular models, that describes metaphase and anaphase separately, 

oscillatory model of mitotic spindle offers different biomechanical approach replacing complex 

molecular structures with biomechanical elements. Mechanism of different chromatid separation 
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times in different chromosomes as well as age related aberration in mitotic spindle functioning 

could be explain with proposed oscillatory model of mitotic spindle. 
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