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Abstract: DNA transcription process is well described at biochemical level. During transcription, double DNA 

interacts with transcription proteins; a part of double DNA is unzipped, and only one chain helix is used as a 

matrix for transcription. Different models of two coupled homogeneous DNA chain vibrations are proposed in 

the literature. To better understand the DNA transcription process and its behavior through biomechanical point 

of view, we consider double DNA (dDNA) as an oscillatory system that oscillates in forced regimes.  When 

data from dDNA molecule are not transcripted, we consider that dDNA molecule oscillates in a manner of free 

fractional order vibrations.On the basis of previous results (DNA mathematical models published by 

N.Kovaleva, L. Manevich in 2005 and 2007, and multi-pendulum models by Hedrih (Stevanović) and Hedrih) 

we obtain a corresponding pair of main chain subsystems of the double DNA helix. Analytical expressions of 

the eigen circular frequencies and eigen fractional order characteristic numbers for the homogeneous model of 

the double DNA fractional order chain helix are obtained. Also, the corresponding eigen free and forced 

fractional order vibration modes and possibilities of the appearance of resonant regimes, as well as dynamical 

absorption under the external forced excitations are considered. Two sets of eigen normal coordinates of the 

double DNA chain helix for separation of the system into two uncoupled main eigen chains are identified. On 

the basis of the derived analytical expressions, a transfer of external excitation forced signals is analyzed. There 

are different cases of the resonant state in one of the main chains, and there are no interactions between main 

chains for special cases of the external one frequency forced excitation. This may correspond to the base pair 

order in complementary chains of DNA double helix in a living cell. 

 

Key-Words: Double DNA helix chain, forced vibrations, eigen main chains, resonant state, dynamical 

absorption, elastic model, fractional order model, transfer of signals.  

 

 

7.1 Introduction - DNA-structure and function  
DNA is a biological polymer which can exist in different forms (A, B, Z, E) but only B form can be found in 

live organisms. Chemically, DNA consists of two long polymers of simple units called nucleotides, with 

backbones made of sugars and phosphate groups joined by ester bonds. To each sugar is attached one of four 

types of molecules called bases (Adenine-A, thymine-T guanine-G and cytosine-C). Two bases on opposite 

strands are linked via hydrogen bonds holding the two strands of DNA together. It is the sequence of these four 

bases along the backbone that encodes information. 

 The basic function of DNA in the cell is to encode the genetic material. For using that information to make 

proteins, DNA molecule has to interact with other molecules in the cell. DNA molecule is moving, changing its 

position and shape during the interactions. DNA molecules can be considered to be a mechanical structure on 

the nanolevel. 
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Fig.1. Model of DNA transcription (modified from, http://www.untiredwithloving.org/satr.html) 

 

 

From the biochemical point of view, during the transcription process, genetic information is transcribing 

from DNA to RNA. The transcribed DNA message is used to produce proteins. There are three main steps to 

the process of DNA transcription: binding of RNA polymerase to DNA, elongation and termination. RNA 

polymerase is an enzyme that binds to a specific nucleotide sequences that "tell" RNA polymerase where to 

begin and where to end the transcription. RNA polymerase attaches to the DNA at a specific area called the 

promoter region. Fig 1. a) Certain proteins, called transcription factors, unwind the DNA strand and allow RNA 

polymerase to transcribe only a single strand of DNA into a single stranded RNA polymer called messenger 

RNA (mRNA). The DNA is unwound at the promoter region by RNA polymerase The strand that serves as the 

template is called the antisense strand. The strand that is not transcribed is called the sense strand. RNA 

polymerase moves along the DNA until it reaches a terminator sequence, Fig1.b) and c). At that point, RNA 

polymerase releases the mRNA polymer and detaches from the DNA. The DNA that is been transcribed is 

rewound into original configuration. Fig.1. 

Every process which binds or reads DNA is able to use or modify the mechanical properties of DNA for the 

purposes of recognition, packaging and modification. It is important to note that DNA found in many cells can 

be macroscopic in length - a few centimeters long for each human chromosome. Consequently, cells must 

compact or "package" DNA to carry it within them, [6]. Knowledge of the elastic properties of DNA is required 

to understand the structural dynamics of cellular processes such as replication and transcription. Binding of 

proteins and other ligands induces a strong deformation of the DNA structure. The mechanical properties of 

DNA are closely related to its molecular structure and sequence, particularly the weakness of hydrogen bonds 

and electronic interactions that hold strands of DNA together compared to the strength of bonds within each 

strand. 
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Single-molecule biomechanics of DNA extension, bending and twisting; protein domain motion, 

deformation and unfolding; the generation of mechanical forces and motions by bimolecular motors is another 

approach to explain the biological function of DNA in the cell, [4]. 

 Knowledge of the elastic properties of DNA is required to understand the structural dynamics of cellular 

processes such as replication and transcription. For details for possible movements of DNA molecule, see 

Appendix E.  

 There are different approaches to studying the mechanical properties of the DNA molecule (experimental, 

theoretical modeling). 

 The aim of our work was to model the DNA dynamics (vibrations of DNA chains) as a biological system in 

a specific boundary condition that are possible to occur in a live system during regular function of a DNA 

molecule. The quick review of mechanical properties of DNA achieved experimentally and relevant existed 

mechanical models of specific dDNA dynamics are given billow. One of soliton existence supporting model of 

DNA-DNA model by N. Kovaleva and L. Manevich and derived oscillatory models of DNA by Hedrih 

(Stevanovic) and Hedrih is specially discussed. 

 

 

7.2  Mechanical properties of DNA achieved experimentally 
Experimental evidence suggests that DNA mechanical properties, intrinsic curvature and flexibility in 

particular, have a role in many relevant biological processes. 

For small distortions, DNA overwinds under tension, [18]. Lowering of the temperature does increase the DNA 

curvature. The DNA double helix is much more resistant to twisting deformations than to bending 

deformations, and almost all of the supercoiling pressure is normally relieved by writhing, [2]. The twist angle 

of the helix has been shown to depend on sequence when the molecule is in solution both by the effects on 

supercoiling parameters when short segments of known sequence are inserted into closed circular DNA  [47], 

[53]. 

     Under low tension, DNA behaves like an isotropic flexible rod. At higher tensions, the behavior of over- and 

underwound molecules is different. In each case, DNA undergoes a structural change before the twist density 

necessary for buckling is reached [6]. The environment and its ionic strength have influence on DNA curvature. 

Mg2+ can induce or enhance curvature in DNA fragments and helps stabilize several types of DNA structures, 

[5]. DNA length varied in solution with different ionic force. It is significantly longer in solution with lower 

ionic force, [14]. 
 

 

7.3  Mechanical models of the DNA 
A number of mechanical models of the DNA double helix have been proposed until today. Different models are 

focusing on different aspects of the DNA molecule (biological, physical and chemical processes in which DNA 

is involved). A number of models have been constructed to describe different kinds of movements in a DNA 

molecule: asymmetric and symmetric motion; movements of long and short segments; twisting and stretching 

of dDNA, twist-opening conditions. We are going to mention some of the models that can explain twist-

opening conditions. Details for some types of the models are given in the Appendix E.2. (see Ref [23]). 

 Bryant et al. (see Ref. [6]) have shown that an over- or underwound DNA molecule behaves as a constant-

torque wind-up motor capable of repeatedly producing thousands of rotations, and that an overstretched 

molecule acts as a force–torque converter. The production of continuous directed rotation by molecular devices 

has potential applications in the construction of nanomechanical systems  [4]. Polymer models are used to 

interpret single-molecule force-extension experiments on ssDNA and dsDNA. They show how combining the 

elasticity of two single nucleic acid strands with a description of the base-pairing interactions between them 

explains much of the phenomenology and kinetics of RNA and DNA ‘unzipping’ experiments [8,56]. Eslami-

Mossallam and Ejtehadi, [13] proposed the asymmetric elastic rod model for DNA. Their model accounts for 

the difference between the bending energies of positive and negative rolls, which comes from the asymmetric 

structure of the DNA molecule. The model can explain the high flexibility of DNA at small length scales, as 

well as kink formation at high deformation limit. A special type of DNA models are soliton-existence 

supporting models. One of the first of this kind was the Yakushevich model of DNA and models based on it  

[15]. The dynamics of topological solitons describing open states in the DNA double helix are studied in the 

framework of a model that takes into account asymmetry of the helix. Yakushevich, et al  [55] investigated 
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interaction between the solitons, their interactions with the chain inhomogeneities, and stability of the solitons 

with respect to thermal oscillations, and have shown that three types of topological solitons can occur in the 

DNA double chain. González and Martín-Landrove, [16] gave a complete qualitative analysis of soliton 

interaction in DNA torsional equations. The model emphasizes the importance of the solitons for opening of the 

double DNA helix. The region of the chain where there is a maximum opening is larger for the general case, 

since the asymptotical behavior for the kink type solitons is smoother than the one corresponding to the 

solutions in the particular case. There is possibility that an enzyme takes charge for the opening of the chain. 

The supersonic solutions, since they represent states that are totally open, could contribute significantly to the 

fusion of the DNA chain to the enzymatic activity. The presence of a propagating soliton along the chain could 

contribute to its opening through the interaction among different types of open states. The composite model for 

DNA is also based on the Yakushevich model (Y model). The mechanism for selecting the speed of solitons by 

tuning the physical parameters of the non-linear medium and the hierarchal separation of the relevant degrees 

of freedom are described in this model,see [7,11]. In the symmetric twist-opening model of DNA the small 

amplitude dynamics of the model is shown to be governed by a solution of a set of coupled nonlinear 

Schrödinger equations. Conditions for modulation instability occurrence are presented and attention is paid to 

the impact of the backbone elastic constant K. It is shown that high values of K extend the instability region. 

This model can be reduced to a set of coupled discrete nonlinear system equations. The growth rate of 

instability has been evaluated and increases with the coupling constant K. The kink-bubble soliton, made of two 

parts of different size, has been shown to be mobile. Authors supposed that the kink-bubble solution can be 

used to describe the internal dynamics which usually consists of long-range collective bending and twisting 

modes of the bases, short-range oscillations of individual bases, and the reorientation of the spin label [52]. 

Binding of proteins and other ligands on DNA induces a strong deformation of the DNA structure.  

The aim of our work was to model the DNA dynamics (vibrations of DNA chains) as a biological system in 

a specific boundary condition that are possible to occur in a live system during regular function of a DNA 

molecule. We consider double DNA (dDNA) as an oscillatory system that oscillates in forced regimes during 

the DNA transcription process. To model the oscillation of dDNA in free and forced regimes we use, as a basic 

approach, the model of dDNA proposed by N.Kovaleva, L.Manevich, V.Smirnov (see [41], [42]). Basis of the 

DNA models proposed by Kovaleva and Manevich, will be given in the section bellow. 

 

 

7.4  DNA models by N. Kovaleva and L. Manevich  
One of the soliton-existence supporting models of dDNA is also the model proposed by N.Kovaleva, 

L.Manevich, V.Smirnov, see [41,42]. They show that in a double DNA helix localized excitation (breather) can 

exist, which corresponds to predominant rotation of one chain and a small perturbation of the second chain, 

using a coarse-grained model of the DNA double helix. Each nucleotide is represented by three beads with 

interaction sites corresponding to phosphate group, group of sugar ring, and the base [41]. 

 

      
                   Fig. 2. a                      Fig. 2. b       

 

 Fig. 2. a The model scheme of a double helix on six coarse-grained particles (Kovaleva, Manevich, and 

Smirnov, 2007). Fig. 2.b Fragment of the DNA double chain consisting of three АТ base pairs. Longitudinal 

pitch of the helix  ; transverse pitch  (see Ref. [42] by Kovaleva, and Manevich, 2005).  
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Kovaleva, Manevich, and Smirnov, [41] point out that solitons and breathers play a functional role in DNA 

chains. In a model, the DNA backbone is reduced to the polymeric structure and the base is covalently linked to 

the center of the sugar ring group, thus a DNA molecule with N nucleotides corresponds to 3N interaction 

centers. Starting from a coarse-grained off-lattice model of DNA and using cylindrical coordinates, the authors 

derive simplified continuum equations corresponding to vicinities of gap frequencies in the spectrum of 

linearized equations of motion. It is shown that obtained nonlinear continuum equations describing modulations 

of normal modes, admit spatially localized solitons, which can be identified with breathers. The authors 

formulated conditions of the breathers’ existence and estimated their characteristic parameters. The relationship 

between a derived model and simpler and widely used models is discussed. The analytical results are compared 

with the data of numerical study of discrete equations of motion. See Fig. 2.a. 

Kovaleva, and Manevich, [42] developed the simplest model describing the opening of DNA double helix. 

The corresponding differential equations are solved analytically using multiple-scale expansions after transition 

to complex variables. Obtained solution corresponds to localized torsional nonlinear excitation – breather. The 

stability of breather is also investigated. They consider B form of the DNA molecule, the fragment of which is 

presented in Fig. 2b. The lines in the figure correspond to the skeleton of the double helix, black and gray 

rectangles show the bases in pairs (AT and GC).  

Let us focus our attention on the rotational motions of bases around the sugar-phosphate chains in the plane 

perpendicular to the helix axis. 

The authors deal with the planar DNA model in which the chains of the macromolecule form two parallel 

straight lines placed at a distance h  from each other, and the bases can make only rotation motions around their 

own chain, being all the time perpendicular to it. The authors accepted as generalized (independent) coordinates 

1,kϕ  that are the angular displacement of the k -th base of the first chain, and as generalized (independent) 

coordinates 2,kϕ the angular displacement of the k -th base of the second chain. Then, using the accepted 

generalized coordinates 1,kϕ  and 2,kϕ  for the k -th bases of both chains in the DNA model, the authors derived 

a system of differential equations describing DNA model vibrations in the following forms: 
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Here, 1kJ ,  is the axial moment of mass inertia of the k -th base of the first chain; 2,kJ  is the axial moment 

of mass inertia of the k -th base of the second chain, and the point denotes differentiation in time t. For the base 

pair, the axial moments of mass inertia are equal to 
2

, ααrm=1kJ , 
2

2, ββ rm=1kJ . The value of the base mass 

αm , the length αr , and the corresponding axial moment of mass inertia 
2

, ααrm=1kJ for all possible base pairs 

the authors accepted as in the [42]. The fourth terms in the previous system of equations describe the 

interaction of the neighboring bases along each of the macromolecule chain. The parameter ikK , , 

2,1=i characterizes the energy of interaction of the k -th base with the ( 1+k )-th one along the i -th chain 

2,1=i . There are different estimations of rigidity. For the calculation, the most appropriate value is close 

to ]/[106 3

, molkJKK ik ×== . 
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7.5  Modified DNA models by N. Kovaleva and L. Manevich for the forced regimes 
We have modified the previous model by Kovaleva and Manevich [42] to investigate how the system of dDNA 

will behave when it is exposed to external excitation. In the process of transcription, the binding of RNA 

polymerase may correspond with external excitation. 

Let’s suppose that both coupled chains from the system of the DNA model by Kovaleva and Manevich are 

excited by the system of external excitation containing two series of the one frequency excitations in the forms 

tk.,k 1.1,0 cosΩM  and tk.,k 2.2,0 cosΩM , nk ,.....,3,2,1= , where 1,0 .,kM  and  2,0 .,kM  are amplitudes, 1.kΩ  and 

2.kΩ  frequencies of the external forced couples each applied to one of the mass particles of the  double DNA 

model coupled chains. Then, the corresponding system of the nonlinear forced vibrations of the double DNA 

model coupled chains is in the following form: 
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7.6  Consideration of the basic DNA model - linearized Kovaleva-Manevich's DNA 

model  
Let us investigate an oscillatory model of DNA considered in the [42] by N.Kovaleva, L. Manevich, (2005) and 

presented in section 4 by a system of differential equations (1) expressed by generalized (independent) angular 

coordinates 1,kϕ  and 2,kϕ  for the k -th bases of both chains in the DNA model. 

For a start, it is necessary to consider a corresponding linearized system of the ordinary differential 

equations of the previous system of differential equations in the following form: 
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or in the following form: 
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For the case of homogeneous systems, we can take into consideration that JJJ 2k1 == ,,k  and 

KKK kk == 2,1, . 

Using change of the generalized independent angular coordinates 1,kϕ  and 2,kϕ  for the k -th bases of both 

chains in the linearized DNA model into the following new kξ  and kη  by the following dependence: 

2,1, kkk ϕϕξ −=    and   2,1, kkk ϕϕη +=                                                              (5) 

the previous system of differential equations (3) obtains the following form: 
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The first series of the previous system of ordinary differential equations are decoupled and independent with 

relations of the second series of the ordinary differential equations. We can conclude then that new coordinates 

of kξ  and kη  are the main chain coordinates of original DNA model double chain system and that we obtain 

two fictive decoupled eigen single chains of the DNA linearized model. This is the first fundamental conclusion 

as an important property of the linearized model of vibrations in a double DNA helix.   

The systems of differential equations (6)-(7) contain two separate independent subsystems of no 

autonomous differential equations expressed by coordinates of kξ  and kη  which are the main chain 

coordinates of a double DNA chain helix system and separate linear DNA model of forced vibrations into two 

independent (fictive, mathematical) chains. 

 

 

7.6.1. Consideration of the free vibrations of a basic DNA model - linearized Kovaleva-

Manevich's DNA model  
We assumed that the system of dDNA oscillates with free vibrations when it is not involved in the process of 

transcription and oscillates with forced vibrations during the process of transcription. 

The corresponding systems of autonomous differential equations are joined to the systems of non-

autonomous differential equations (6)-(7), which also contain two separate subsystems of non-autonomous 

differential equations expressed by coordinates kξ  and kη  which are the main chain coordinates of a double 

DNA chain helix system. The solutions of these corresponding systems of autonomous differential equations are 
n -frequency time functions which correspond to free vibrations with different subsets of n circular frequencies. 

The solutions of the non-autonomous differential equations (6)-(7) are multi-frequency time functions with a 

corresponding subset of eigen circular frequencies containing  n  eigen circular frequencies of free vibrations 

and all frequencies of external forced excitations applied to the double DNA helix chain system. So, if external 

excitation is with n2  circular frequencies jk ,Ω , 2,1=j , nk ,...,3,2,1= , then forced vibrations of the independent 

main chain coordinate of the main chains of the linear DNA model are nn 2+ -frequency time functions. 

To prove this conclusion, for a start, it is necessary to express the solutions of the corresponding systems of 

autonomous differential equations and add the corresponding particular solutions of the systems of non-

autonomous differential equations (6)-(7). 

 Then, for that aim, to obtain the solutions of autonomous system of differential equations, it is possible to 

apply the trigonometric method (see [48],[49] and [24],[25]) to both series of autonomous differential equations 

(both subsystems obtained from the system (6)-(7) put 0,0 =j,kM , 2,1=j , nk ,...,3,2,1= ) in the form: 
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where kA  and kA
~

 are amplitudes of separate eigen main chain coordinates of main chains of the model of 

double DNA chain helix, and ω  eigen circular frequency of the one, free vibration mode. 

After introducing the proposed solutions into the corresponding autonomous differential equations obtained 

from the previous separate subsystems (5)-(6) in which we incorporate 0,0 =j,kM , 2,1=j , nk ,...,3,2,1= , we 

obtain the following separate subsystems of homogeneous algebraic equations along the amplitudes kA  and 

kA
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AA ωβαααβ                           (13) 

After applying the following denotations: 

( ) ( )2
1

2
1

2
βα

αβ

αβαββαααβ

ω
ω

κµ rr
K

K

K

rrrK
−










−−

−
=−                                          (14) 

( )2
1

2
1

2
βα

αβ

αβαβ

ω
ω

κ rr
K

K
−










−= .  

( )
K

rrrK βαααβµ
−

=                                     (15) 

         
2ω

K
u

J
=                                                      (16) 

we obtain the following simple forms of the subsystems (12)-(13) in the following separate subsystems of 

homogeneous algebraic equations along the amplitudes kA  and kA
~

: 

( ) 12 1 0A A u Aµ κ+ −− + + − − − =k 1 k k
                                                       (17) 

                       ( ) 12 1 0A A u Aµ+ −− + + − − =k 1 k k
� � ��                                                                    (18) 

After introducing the proposed solutions (9) and (11), the trigonometric method is applied and we obtain two 

equations: 

( )[ ] 012cos2sin =−−++− ukC κµϕϕ                                                          (19) 

 ( )sin 2cos 2 1 0D k uϑ ϑ µ− + + −  = �                                                                 (20) 

From the previous system, we obtain the following eigen characteristic numbers for both separate eigen 

chains of the model of double DNA chain helix system free vibrations in the following forms:  

 ( )κµ
ϕ

−+=
2

sin2 2u                                                                           (21) 

   22sin
2

u
ϑ

µ= +�                                                                                   

(22) 

and the corresponding analytical expressions of the square of ω  - eigen circular frequencies of vibration 

modes of separate eigen main chains in the following forms: 

 ( )




 −+= κµ
ϕ

ω
2

sin2 22 s
s

J

K
  ns ,.....,3,2,1=                                          

(23) 
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 







+= µ

ϑ
ω

2
sin2~ 22 r

r
J

K
   nr ,.....,3,2,1=                                                          

(24) 

Solutions of main chains coordinates for free vibrations are in the following forms: 

( ) ( ) ( ) ( )∑∑∑
=

=

=

=

=

=

+=+==
ns

s

ssss

ns

s

ss
s

k

ns

s

s
kk tkCtA

111

cossincos αωϕαωξξ , nk ,.....,3,2,1=                 (25) 

( ) ( ) ( ) ( )∑∑∑
=

=

=

=

=

=

+=+==
nr

r

rrrr

nr

r

rr
r

k

nr

r

s
kk tkDtA

111

~cossin~cos
~

βωϑβωηη , nk ,.....,3,2,1=                 (26) 

  

     

7.6. 2. Boundary conditions of the double DNA chain helix  
Now, it is necessary to consider some boundary conditions (see  [48], [49] and [27]) of the double DNA chain 

helix in accordance with the possible real situations. For that reason, we take into account two cases of double 

DNA chain helix, when ends of the chains are free and when ends of the chains are fixed. Then, we can write 

the following boundary conditions of the double DNA chain helix:  

a* case: both ends of the double DNA chain helix are free: 

For that case, the first and n -th equations from the subsystems are in the form:  

                 ( ) 021 21 =−−−+ AuA κµ                                                                             (27a) 

( ) 0211 =−−++− − uAA nn κµ  

  ( )1 21 2 0A u Aµ κ+ − − − =� ��  

            ( )1 1 2 0n nA A uµ−− + + − =� � �                                                                                       (27b) 

and after applying the proposed solutions (9) and (11) we obtain: 

n

s
s

π
ϕ =   and 

n

s
s

π
ϑ =  ns ...,4,3,2,1=                                                                            (27c) 

b*  case: both ends of the of the double DNA chain helix are fixed: 

                    ϕkCAk sin=   00 =A   01 =+nA  ( ) 01sin1 =+=+ ϕnCAm                                   (28a) 

                   ϑkDAk sin
~

=   0
~

0 =A   0
~

1 =+nA  ( ) 01sin
~

1 =+=+ ϑnDAm                                       (28b) 

                  
( )1+

=
n

s
s

π
ϕ   

( )1+
=

n

r
r

π
ϑ  , ns ...,4,3,2,1= , nr ,.....,3,2,1=                                           (28c) 

 

Then the analytical expressions of the square of sω  - eigen circular frequencies of the vibration modes of 

the separate main chains in the double DNA chain helix are [35]: 

( ) ( )











−










−−

−
+= 2

1

222
1

22
sin2 βα

αβ

αβαββαααβ

ω
ωϕ

ω rr
K

K

K

rrrK

J

K s
s

 ,   ns ...,4,3,2,1=       (29) 

( )2 22sin
2

r
r

K r r rK

J K

αβ α α βϑ
ω

 −
 = +
 
 

�  nr ,.....,3,2,1=                                    (30) 

a* case: both ends of the double DNA chain helix are free (see Fig.3.) : 

( ) ( )











−










−−

−
+= 2

1

222
1

22
sin2 βα

αβ

αβαββαααβ

ω
ωπ

ω rr
K

K

K

rrrK

n

s

J

K
s

,  ns ...,4,3,2,1=        (31) 

( )







 −
+=

K

rrrK

n

r

J

K
r

βαααβπ
ω

2
sin2~ 22 ,   nr ,.....,3,2,1=                                                  (32) 
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              Fig 3. Double DNK Chain helix in the form of multi-pendulum model with free ends 
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Fig.4. Double DNK Chain helix d model in the form of multi-pendulum system with fixed ends 

 

 

b* case: both ends of the double DNA chain helix are fixed (see Fig.4.) : 

( )
( ) ( )












−










−−

−
+

+
= 2

1

222
1

212
sin2 βα

αβ

αβαββαααβ

ω
ωπ

ω rr
K

K

K

rrrK

n

s

J

K
s

 ns ,.....,3,2,1=     (33) 

( )
( )2 22sin

2 1
r

K r r rK r

J n K

αβ α α βπ
ω

 −
 = +

+ 
 

�   nr ,.....,3,2,1=                                    (34) 

 

 

7.6. 3. Consideration of the forced vibrations of a basic DNA model - linearized Kovaleva-

Manevich's DNA model  
In order to obtain general solutions of both systems (6)-(7) of non-autonomous differential equations 

corresponding to forced regimes of the main chains vibrations, it is necessary to start with finding the particular 

solutions for this system. Taking into account the denotation (14)-(16), the previous systems (6)-(7) of non-

autonomous differential equations is possible to express in the form: 

[ ] thth
K

kkkk 2.2,,01.1,,01 coscos12
2

Ω−Ω=−−++− −+ kk1kk

J
ξκµξξξ��   nk ,.....,3,2,1=        (35) 

( ) thth
K

kkkk 2.2,,01.1,,01 coscos12
2

Ω+Ω=−++− −+ kk1kk

J
ηµηηη�� , nk ,.....,3,2,1=        (36) 

where 
K

h
.,k

k

1,0

1,,0

M
=    

K
h

.,k
k

2,0
2,,0

M
= , nk ,.....,3,2,1= , reduced external excitation amplitudes. 

Next, taking into account that this system is linear, for simplifications of the calculation procedure, without 

loss of generality, we can solve the system of non-autonomous differential equations describing the main chains 

forced vibrations of the double DNA helix chain system under one frequency external excitation, with 

frequency 1,1Ω  and reduce the amplitude applied 
K

h
.,k

k

1,0

1,,0

M
=  to one mass particle in the first real chain from 

the coupled chains. For that reason, we find particular solutions that correspond to forced vibrations with 

frequency 1,1Ω  in the following form (see Fig. 5): 

Chapter 7

154



 

[ ]




≠

=Ω
=−−++− −+

10

1cos
12

2 1.11,1,0
1

k

kth

K
kk1kk

J
ξκµξξξ��  nk ,.....,3,2,1=            (37) 

( )




≠

=Ω
=−++− −+

10

1cos
12

2 1.11,1,0
1

k

kth

K
kk1kk

J
ηµηηη�� , nk ,.....,3,2,1=      (38) 

Particular solutions for the first and second system (37)-(38) are proposed in the forms: 

 , 1,1cosport k kN tξ = Ω   nk ,.....,3,2,1=                                                (39a) 

 , 1,1cosport k kN tη = Ω�   nk ,.....,3,2,1=                                                 (39b) 

and introducing the following denotations: 

 2ω
K

u
J

=  2
1,1, kk

K
v Ω=

J
  2

12,2, kk
K

v Ω=
J

                        (40) 

and introducing the proposed particular solutions (39)-(40) into the system (37)-(38), we obtain the following 

system of algebraic non-homogeneous system:  

           ( )




≠

=
=−−−++− −+

10

1
12

1,1,0
11,1

k

kh
NvNN kk1k κµ   nk ,.....,3,2,1=                      (41) 

        ( )




≠

=
=−−++− −+

10

1~~1
~

2
~ 1,1,0

11,1
k

kh
NvNN kk1k µ   nk ,.....,3,2,1=                      (42) 

where 2
1,11,11,1

~ Ω==
K

vv
J

. 

Using the Cramer rule, for the amplitudes of particular solutions, we obtain the following: 

 ( ) ( )
( )1,1

1,1
1,1

v

v
vN

k
k ∆

∆
=   nk ,.....,3,2,1=                        (43) 

 ( ) ( )
( )1,1

1,1
1,1 ~~

~~
~~

v

v
vN

k
k

∆

∆
=   nk ,.....,3,2,1=                        (44)  

where, for example, two-system determinates, ( )1,1v∆  and ( )1,1
~~
v∆ , are in the following forms (for the de-coupled 

main chains, each with four degrees of freedom): 

 

( )

( )
( )

( )
( )

0

121

1121

1121

112

1,1

1,1

1,1

1,1

1,1 ≠

−−+−

−−−+−

−−−+−

−−−+

=∆

v

v

v

v

v

κµ
κµ

κµ
κµ

           (45) 

 

( )

( )
( )

( )
( )

0

~121

1~121

1~121

1~12

~~

1,1

1,1

1,1

1,1

1,1 ≠

−+−

−−+−

−−+−

−−+

=∆

v

v

v

v

v

µ
µ

µ
µ

                              (46) 

For the same example the other determinants ( )1,1vk∆  and ( )1,1
~~
vk∆ , nk ,.....,3,2,1= , are obtained from the 

corresponding two-system determinates, ( )1,1v∆  and ( )1,1v∆� �  introducing into the corresponding column, the 

column with free terms from the right sides of the non-homogeneous  algebraic equations (41)-(42): 

( ) ( )
( )

( )

( )( )3
1,1

3

1

14
1,1,0

1,1

1,1

1,1

1,1,0

1,11 2
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1121

1121

1

=
=

=

− −=
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−

=∆ ∏ n
s

s
s

uvh

v

v

v

h

v
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κµ
 (47) 
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( ) ( )
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( )

( )( )3
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3

1

14
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( )
( )
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Fig. 5. Double DNK Chain helix  model in the form of multi-pendulum system  with fixed ends 
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Particular solutions of the main chains coordinates of considered examples with eight degrees of freedom of 

double DNA helix chain system containing two coupled chains, each with four degrees of freedom and excited 

by one frequency external excitation, are in the following forms: 

( )( )

( )( )
t

uv

uvh
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s

s

s

n
s

s
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r
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s
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2
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t

uv

uvh
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r

r

r

n
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r
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∏
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∏
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=
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Solutions of the main chains coordinates of the homogeneous system for the considered example in free 

vibration regime are: 

 ( )∑
=

=

+=
4

1

, cossin

s

s

sssskfree tkC αωϕξ , 4,3,2,1=k                                                      (63) 

 ( )∑
=

=

+=
4

1

,
~cossin

r

r

rrrrkfree tkD βωϑη , 4,3,2,1=k                                                (64) 

General solutions of the main chains coordinates of the homogeneous system for the considered example in 

coupled free and forced vibration regimes are: 

 ( ) kpart

s

s

sssskpartkfreek tkC ,

4

1

,, cossin ξαωϕξξξ ++=+= ∑
=

=

, 4,3,2,1=k                          (65) 

  ( ) kpart

r

r

rrrrkpartkfreek tkD ,

4

1

,,
~cossin ηβωϑηηη ++=+= ∑
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=

, 4,3,2,1=k                          (66) 
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or in the form 

 ( ) ( ) tvNtkC k

s

s

sssskpartkfreek 1,11,1

4

1

,, coscossin Ω++=+= ∑
=

=

αωϕξξξ , 4,3,2,1=k                (67) 

 ( ) ( ) tvNtkD k

r

r

rrrrkpartkfreek 1,11,1

4

1

,, cos~~~cossin Ω++=+= ∑
=

=

βωϑηηη , 4,3,2,1=k              (68) 

For the system of double DNA helix chain system with n2  degrees of freedom, the previous two-sub-

system determinates ( )1,1v∆  and ( )1,1
~~
v∆  are not difficult to express in similar forms. 

Then, taking into account that determinates ( )1,1v∆  and ( )1,1
~~
v∆  are analogous to determinants describing the 

frequency equations of the free vibrations of the double DNA helix chain system, which is possible to express 

in the following forms: ( ) 0=∆ u  and ( ) 0
~

=∆ u , and that we have roots of these frequency equations in the forms 

(23)-(24), then we have roots of the two-system determinates, ( )1,1v∆  and ( )1,1
~~
v∆  in the forms: 
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ϕ
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2

sin2 22
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J
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J
v    nr ,.....,3,2,1=                                  (70) 

Using the previous characteristic numbers of the previous two-sub-system determinates, these determinants, 

( )1,1vk∆  and ( )1,1
~~
vk∆ , are possible to express in the forms of products: 
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                                                                          (72) 

It is possible, in the same way, to find the expressions for the amplitude of particular solutions depending on 

the number of degrees of freedom n2 . For example, it is obvious without calculations that the amplitude 1N , 

1

~
N  and 2N , 2

~
N  of the particular solutions of the first and second normal coordinates, 1,partξ , 1,partη  and 2,partξ , 

2,partη  of each of the both main chains are in the following forms: 
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General solutions of the main chains coordinates of the homogeneous system for the considered example in 

coupled free and forced vibration regime are in the following forms: 

( ) kpart

ns

s

sssskpartkfreek tkC ,

1

,, cossin ξαωϕξξξ ++=+= ∑
=

=

, nk ,.....,3,2,1=             (75) 

 ( ) kpart

nr

r

rrrrkpartkfreek tkD ,

1

,,
~cossin ηβωϑηηη ++=+= ∑

=

=

, nk ,.....,3,2,1=               (76) 

or in the form 
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For the case when one frequency external excitation with reduced amplitude 
K

h
., 2,10

1,2,0

M
=  with frequency 

1,2Ω  is applied to the other first material particle n of the other of the coupled real chains, then two subsystems 

of the main eigen chains are described by the following subsystems of differential equations: 
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Particular and general solutions of these previous equations are not difficult to obtain analogously to the 

previous procedure and by changing the corresponding indices of the kinetic parameters of the main chains. 

 

 

7.6. 4. Consideration of the forced vibration regimes of a basic DNA model - linearized 

Kovaleva-Manevich's DNA model-resonance and dynamical absorption 
From the expressions (73) and (74), the possibilities of the occurrence of resonant regimes in eigen main chains 

can be considered.  

For the case when the determinants (71) and (72), ( ) ( )( ) 02 1,1
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n
uvv   are equal to zero, we obtain two sets of external excitation frequencies for which in 

the system there appears a resonant regime. But taking into account that eigen main chains have different sets 

of eigen circular frequencies as well as different sets of resonant circular frequencies of external excitation, then 

it can be inferred that if in one eigen main chain there appears a resonant regime, then there is no resonance in 

the other eigen main chain. This is an important fact to consider in the light of the real double DNA helix chain 

system.  

Also, using the expressions for amplitudes of the particular forced solutions, the occurrence of dynamical 

absorptions at the corresponding main chain coordinate of eigen main chain is possible. To obtain the external 

excitation frequencies at which the dynamical absorption occurs at the first or second main chain coordinate of 

the main chains are equal to zero:      
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and next 
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 From the last conditions (83) and (84) we can conclude that: 
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 * Dynamical absorption on the first pair of the main coordinates of the main chains occurs on the resonate 

circular frequencies of the set of the double DNA helix chain system with one pair of the material particles less 

compared to the considered real system. 

* Dynamical absorption on the second pair of the main chain coordinates of the main chains occurs on 

the resonate circular frequencies  of the set of the double DNA helix chain system with two pairs of the material 

particles less compared to the considered system. 

This mathematical fact is important to consider in the light of the interruption or break of the double 

DNA helix chain system. By choosing the frequency of external excitation force, it is possible to define the 

conditions of place of the dDNA breakage. 

 

 

7.7  The double DNA fractional order chain model on the basis of the linearized 

Kovaleva-Manevich's DNA models for free and forced vibrations 
In this section fractional order model of dDNA is considered. Free and forced vibrations of this type 

of model are discussed. Analytical solutions for main coordinates and eigen frequencies for coupled 

and decupled system are given. Visualization of the main modes of free vibrations of fractional order 

dDNA helix chain system and corresponding partial fractional order oscillatory modes are also 

presented in this section. 

 

 

7.7.1. Constitutive relation of the standard light fractional order creep element  
Basic elements of the multi-mathematical pendulum system or multi-coupled chain system are: 

1* Material particles with mass km , with each particle having one degree of motion freedom, defined by 

the following coordinate kϕ , when k  changes by Nk ,....,4,3,2,1= . 

2* Standard light fractional order coupling element of negligible mass in the form of axially stressed rod 

without bending, which has the ability to resist deformation under static and dynamic conditions (see Refs. 

[12], [20-22], [24-34]). Standard light creep constraint element for which the stress-strain relation for the 

restitution force, as the function of element elongation, is given by fractional order derivatives in the form  

( ) ( ) ( )[ ]{ }txctxctP t
α

αD+−= 0                                                                          (85) 

where [ ]•α
tD  is operator of the thα  derivative with respect to time t in the following form,[19]: 
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t

d x t xd
x t x t d

dt dt t

α
αα

αα

τ
τ

α τ
  = = =  Γ − −∫D                                          (86) 

where ,c cα  are rigidity coefficients–momentary and prolonged one,  and α  a rational number between 0 and 

1, 10 <<α . 

 

 

7.7.2. The double DNA fractional order chain free vibration model on the basis of the linearized 

Kovaleva-Manevich's DNA model 
In this section, we will define the discrete continuum mathematical pendulum chain as a system of material 

particles inter-coupled by light standard coupling elements (elastic, hereditary or creep) and which are, in 

natural state, on defined inter-distances (when coupling elements are unstressed) (see Refs. [24-33]).  

We used the fractional calculus to model the system that does not have ideally elastic properties. This 

concept may be incorporated into the theory of aging materials. As DNA molecule is aging it loses ideally 

elastic properties and expresses more visco-elastic properties. 

We define discrete homogeneous multi-mathematical pendulum chain system as a system of discrete 

material particles of the same masses, which can rotate/oscillate along the corresponding circles with the same 

radius �  and centers on the one horizontal line. The entire system is in the vertical plane and the gravitational 

field (see Fig. 6 and 7). 
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The number of degrees of freedom of each of these multi-pendulum chains is equal to the number of 

material particles in it, since we accept the previously defined character of the system. 

Furthermore, we introduce the hypotheses about the homogeneity of discrete continual chain, about small 

deformations of light standard coupling elements, and that displacements of material particles are small. 

Also, we introduce the hypothesis that the homogenous discrete continuum, chain, was in natural, non-

stressed state, before the initial moment of motion observation i.e. that light standard coupling elements do not 

have a prehistory or memory of stress-strain state. With these hypotheses, we will direct our research to the 

dynamics of chain-like homogenous multi-pendulum systems. 
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Fig. 6. Double DNK fractional order chain helix in the form of multi-pendulum model with free ends 
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Fig.7. Double DNK fractional order chain helix d model in the form of multi-pendulum system with fixed ends 

 

     For the double DNA fractional order chain model on the basis of the linearized Kovaleva-Manevich's DNA 

model, we accept two chains as presented in Fig. 6 or 7, in the form of the double chain fractional order system 

containing two coupled multi-pendulum subsystems, in which the corresponding material particles of the 

corresponding multi-pendulum chains are coupled by one standard light fractional order element with stress-

strain constitutive relations in the form (85).  

Then, we can use the system (3) of the coupled linear differential equations extended by terms containing 

fractional order differential operators in the form (85). Then, we can write the corresponding system of the 

fractional order differential coupled equations for free fractional order vibrations of the double DNA fractional 

order chain system in the form: 
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where σ,,1kK , σ,2,kK , σαβ ,K and σαβ ,K  are material constants of the double DNA fractional order chain model  

coupling elements pressing fractional order creep properties.  The previous system is possible to rewrite in the 

following form: 
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 As our intention is to use the previous double DNA fractional order chain model for the case of the 

homogeneous system parameters, we take into account that: σ,,1kK = σ,2,kK =K. and σαβ ,K = σαβ ,K . Then, 

taking into account that we introduce the notation (14), (15) and (16), then the previous system of coupled 

fractional order differential equations is possible to write in the following form: 
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where 
K

K σαβ
σκ

,= . 

Using change of the generalized independent angular coordinates 1,kϕ  and 2,kϕ  for the k -th bases of both 

chains in the double DNA helix chain model into the following new coordinates kξ  and kη , as relations (5) in 

section 6 in the form: 2,1, kkk ϕϕξ −=  and 2,1, kkk ϕϕη += , the previous system of ordinary differential 

fractional order equations (89) obtains the following form: 

( ) ( )[ ]1,111 1212
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K

ηηηκηηµηη σ
σ Dk

J
�� ,   nk ,.....,3,2,1=             (91) 

The first series (89) of differential fractional order equations of the previous system (90)-(91) is decoupled 

and independent with relations of the second series (91) of the fractional order differential equations. Then, we 

can conclude that new coordinates of kξ  and kη  are the main chain coordinates of the double DNA fractional 

order chains and that we obtain two fictive decoupled and independent single eigen fractional order chains of 

the double DNA fractional order model. This is a fundamental conclusion as an important property of the 

fractional order homogeneous model of vibrations in a double DNA fractional order homogeneous helix. 

The systems of fractional order differential equations (90)-(91) contain two separate subsystems of 

fractional order differential equations expressed by coordinates of kξ  and kη  which are the main coordinates 

of a double DNA fractional order chain helix and separate DNA fractional order model into two independent 

fractional order chains.  
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7.7.3. Analytical solutions of the subsystems of the main chains fractional order differential equations for 

free fractional order vibrations  

We solve the previous subsystems (90) and (91) of fractional order differential equations using the Laplace 

transformations (for detail see Appendix E.3). After applying the Laplace transformations of the previous 

systems (90) and (91) of fractional order differential equations with fractional order derivative and having in 

mind that we introduced notations ( ){ }tkξL  and ( ){ }tkηL  for the Laplace transformations of unknown normal 

chain coordinates kξ  and kη , as well as that: 
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and also having in mind that we accepted the hypothesis that the initial conditions of fractional order 

derivatives of the system are given using: ( )
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where k0ξ  and  k0ξ�   as well as k0η and  k0η�  are defined by initial conditions of the system material particle 

dynamics in the chains, we can write the following system of the algebraic equations according to the unknown 

Laplace transforms ( ){ }tkξL  and ( ){ }tkηL of unknown normal chain coordinates kξ  and kη : 
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Now, we have two separate, uncoupled non-homogeneous subsystems of the algebraic equations in the 

following forms: 
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Taking into account that at initial moment we have: 1.00 ≠= kkξ  and  1.00 ≠= kkξ�   as well as 1.00 ≠= kkη and  

1.00 ≠= kkη�   the previous equations obtain the following form: 

{ } ( ) ( ){ } { } ( )




≠

=
=−++− +−

10

1,,
2 0101

11
k

kph
tv kkk

ξξ
ξξξ ξ

�
LLL                                            (100) 

{ } ( ) ( ){ } { } ( )




≠

=
=−++− +−

10

1,,
2

0101
11

k

kph
tv kkk

ηη
ηηη η �

LLL                                    (101) 

where  
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( ) [ ]
[ ]σ

σ
ξ κω

ξξ
ξξ

p

p
ph kk

kk +
+

=
1

,,
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0
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�
� ,  ( ) [ ]

( )σ
σ

η κω
ηη

ηη
p

p
ph kk

kk +
+

=
1

,,
2

0

00
00

�
                   (103) 

Both subsystems (100)-(101) are of the same form and it is enough to solve one of the subsystems and applying 

the analogy it is easy to solve other subsystem of fractional order differential equations. For that reason, we can 

use the method proposed in the papers [30] and [31]. 

Determinates of the previous algebraic subsystem (100) as well as (101) are in the same form as presented in 

the following form: 

( ) 0

21

12

21

12

≠

+−

−+

+−

−+

=∆

×NN

N

v

v

v

v

v   .                                                      (104) 

Introducing the notation (102) and (103), for the determinants ( )( )ξhvk ,
~
∆ , we can write the following forms: 

( )( )
( )

( ) ( )( )vph

v

v

v

ph

hv N

N

10101

0101

1
,,

21

12

20

1,,

,
~

−∆=

+−

−+

+

−

=∆ ξξ

ξξ

ξ

ξ

ξ
�

�

;                                 (105) 

( )( )
( )

( ) ( ) ( ) 0,,1

21

120

101

,,2

,
~

20101
12

0101

2
≠∆−=

+−

−+

−−

+

=∆ −
+

vph

v

v

phv

hv N

N

ξξ

ξξ

ς

ξ

ξ
�

�

                       (106) 

( )( )

( )

( ) ( ) ( )vph

v

v

v

v

v

phv

hv N

N

30101
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0101

3
,,1
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−
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−+
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ξ
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�

           (107) 

( )( )

( )

( ) ( ) ( )vph

ph

hv N

N

40101
1114
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4
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,,012

,
~

−
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+−

−+−
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−−

+−

−+−

−+
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ν
ν

ν

ν
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ξξν

ξ

ξ

ξ
�

�

       (108) 

( )( )

( )

( ) ( )0101
12

0101

,,1

01

021

0121

0121

0121

0121

,,12

,
~

ξξ
ν

ξξ

ξ

ξ

ξ
�

�
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v

v

v

v

phv
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N

N

N

−−=

−

+−

−+−

−+−

−+−

−+−

−+

=∆
                   (109) 

To solve the system of the algebraic non-homogeneous equations (100) or (101) with respect to unknown 

Laplace transforms ( ){ }tkξL  or ( ){ }tkηL  of the time function main chain coordinates ( )tkξ  and ( )tkη , 
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unknown normal chain coordinates of the system main chains, we can use the Cramer approach and we can 

write: 

   ( ){ } ( ) ( )
( )

( ) ( ) ( )
( )

2 1

0 0, 1 , ,
k

k k N kk

k N
N N

v h h p v
t

v v

ς ξ ξ ξ
ξ

−

−∆ − ∆
= =

∆ ∆

��

L .                         (110) 

 ( ){ } ( ) ( )
( )

( ) ( ) ( )
( )

2 1

0 0
, 1 , ,

k

k k k N k

k N
N N

u h h p u
t

u u

η η η η
η

−

−
∆ − ∆

= =
∆ ∆

�

L .                            (111) 

Let us first analyze the solution and characteristic equations of the homogenous subsystem as basic 

subsystems of the algebraic non-homogeneous equations (100) or (101) with respect to unknown Laplace 

transforms ( ){ }tkξL  or ( ){ }tkηL  of the time function main coordinate ( )tkξ  and ( )tkη , unknown normal chain 

coordinates of the system main chains. These two of the homogenous subsystem as basic subsystems of the 

algebraic non-homogeneous equations (100) or (101) are in the following forms: 

{ } ( ) ( ){ } { }1 12 0k k kv tξ ξ ξ− +− + + − =L L L                                                    (112) 

{ } ( ) { } { }1, 12 0k k kuη η η− +− + + − =L L L                                                        (113) 

  

The solution of such a subsystem of algebraic homogenous equations (112) or (113), from which we obtain a 

series of determinants, can be obtained using the trigonometric method (see [48] or [27] )) or by obtaining the 

recurrent formulas. Let us use the trigonometric method and, for that reason, the solutions are assumed in the 

following forms:  

 ( ){ } sink t N kξ φ=L ,                                                                             (114) 

and introducing into the previous subsystems (112) or (113), we have that: ( )1cos2 −= ϕv  and 

( )1cos2 −= ϕu , as well as the following two characteristic equations: 

[ ]
[ ] ( )1cos22
1

2
2

0

2

0

2

−=−
+
+

= ϕκ
κω
µω

σ
σ p

p
v ,  

[ ]
[ ] ( )1cos2
1

2
2

0

2

0

2

−=
+
+

= ϕ
κω
µω

σ
σ p

p
u           (115) 

or in the forms: 

a* for the first main chain with a set of main chain coordinates ( )tkξ : 

( )( ) nspp s ,...,3,2,1,0cos21122 2

0

2

0

2 ==−−+++ ϕκκωµω σ
σ                         (116) 

b* for the second main chain with main chain coordinates ( )tkη : 

( )( ) nspp s ,...,3,2,1,0cos1122 2

0

2

0

2 ==−+++ ϕκωµω σ
σ                                        (117) 

where sϕ  depends on the boundary conditions on the ends of the corresponding system main chain. 

Based on the previous two characteristic equations (116) and (117), the subsystem characteristic 

determinants of the system can be written in the following form: 

a* for the first main chain with a set of main chain coordinates ( )tkξ : 

( )( )[ ] 0cos1122 2

0

2

0

2

1

≠−−+++=∆ Π
=

=
s

Ns

s

N pp
x

ϕκκωµω σ
σ ,                              (118) 

b* for the second main chain with main chain coordinates ( )tkη : 
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( )( )[ ] 0cos1122 2

0

2

0

2

1

≠−+++=∆ Π
=

=
s

Ns

s

N pp
x

ϕκωµω σ
σ                              (119) 

from which we obtain a series of determinants when we replace one of the columns with a column of free terms 

on the right side of the fractional order differential equations in system (111) as well as (112), as it is shown by 

the calculus in (91) - (107). Based on that, for given initial conditions for each of the particle coordinates of 

material particles in the corresponding chain, we can obtain the following determinants corresponding to a 

certain column (and to an unknown Laplace transformation ( ){ }tkL of the coordinate ( )tkξ ) in the following 

forms: 

                ( )( ) ( ) ( )( )vphhv
N 101011

,,,
~

−∆=∆ ξξξξ
� ;     

     ( )( ) ( ) ( ) ( )vphhv N 20101
12

2
,,1,

~
−

+ ∆−=∆ ξξξξ
� ;     

     ( )( ) ( ) ( ) ( )vphhv N 30101
113

3
,,1,

~
−

++ ∆−=∆ ξξξξ
�  

    ( )( ) ( ) ( ) ( )vphhv
xN 40101
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4
,,1,

~
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+++ ∆−=∆ ξξξ
�      

     ( )( ) ( ) ( ) ( )vphhv N 50101
11115

5
,,1,

~
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      ………………………………… 

( )( ) ( ) ( ) ( )ξξξ ξξ hvphhv
mN

m

m x
,,,1,

~
0101

12

−
− ∆−=∆ � ; .........                                                 (120) 

1.a* for the first main chain with a set of main chain coordinates ( )tkξ  the determinate of the subsystem is: 

( ) ( )( )[ ] 0cos1122 2

0

2

0

2

1

≠−−+++=∆ Π
−=

=
− s

kNs

s

kN ppp ϕκκωµω σ
σ                         (121) 

1.b* for the second main chain with main chain coordinates ( )tkη  the determinate of the subsystem is: 

( ) ( )( )[ ] 0cos1122 2

0

2

0

2

1

≠−+++=∆ Π
−=

=
− s

kNs

s

kN ppp ϕκωµω σ
σ                                 (122) 

2.a* for the first main chain with a set of main chain coordinates ( )tkξ  the particular determinates of the 

subsystem are: 

 ( )( ) ( ) ( )( )[ ] 0cos1122,,,,,
~ 2

0
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1
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 ……………………………………………………                                                   (123)          

 ( )( ) ( ) ( ) ( )( )[ ] 0cos1122,,1,,,
~ 2

0
2
0

2

1

0101
12

0101 ≠−−+++−=∆ Π
−=

=

−
s

kNs

s

k

k
ppphhp ϕκκωµωξξξξ σ

σξξ
��                  
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0101
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−
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2.b* for the second main chain with main chain coordinates ( )tkη ( )tkξ  the particular determinates of the 

subsystem are: 
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Based on these previous discoveries, we can deduce the following expressions for the unknown Laplace 

transformations ( ){ }tkξL  or ( ){ }tkηL of the time function main chain coordinates ( )tkξ  and ( )tkη , unknown 

normal chain coordinates of the sub-system main chains: 

3.a* the Laplace transformations ( ){ }tkξL  of the time function main chain coordinate ( )tkξ  for the 

first main chain with a set of main chain coordinates ( )tkξ are: 

( ){ } ( )
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∏
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σ
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3.b* the Laplace transformations  ( ){ }tkηL  for the second main chain with main chain coordinates ( )tkη  

for the first main chain with a set of main chain coordinates ( )tkη  are: 

       ( ){ } ( )
( ) ( )( )[ ]
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∏
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The previous solutions for the unknown Laplace transformations ( ){ }tkξL  or ( ){ }tkηL of the time function 

main chain coordinates  ( )tkξ  and ( )tkη , the unknown normal chain coordinates of the sub-system main 

chains can be written in the following form: 

4.a* the Laplace transformations ( ){ }tkξL  of the time function main chain coordinates ( )tkξ  for the first 

main chain with a set of main chain coordinates ( )tkξ are: 
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  Nk ,...,3,2,1=                       (127) 

4.b* the Laplace transformations  ( ){ }tkηL  for the second main chain with main chain coordinates ( )tkη  

for the first main chain with a set of main chain coordinates ( )tkη  are: 
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Nk ,...,3,2,1=                                          (128) 

5.a* for the first main chain with a set of main chain coordinates ( )tkξ : 
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Nk ,...,3,2,1=                      (129) 

5.b* for the second main chain with main chain coordinates ( )tkη : 
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Nk ,...,3,2,1=                         (130) 

After developing the binomials into series of previous particular solutions, it is easy to obtain time solutions in 

the form of the series with respect to time (see Appendix E.3-E.4). 

 

 

7.7.4. Main coordinates of the fractional order double DNA helix chain system and 

corresponding partial fractional order oscillators  
Starting from two subsystems of the main eigen chain fractional order differential equations (90)-(91) and the 

corresponding basic linear subsystems: 

0222
2

11 =−+−+− +− kkk

J
κξµξξξξξ kkk

K
��                                                    (131) 

022
2

1,1 =+−+− +− kk

J
µηηηηη kkk

K
�� ,   1,2,3,.....,k n=                            (132) 

we can find two subsystems of the corresponding independent partial fractional order oscillators. For that 

reason, we applied trigonometric method (see [48], and [24-27]) and introduce into the previous subsystem (59) 

the following assumed solutions:  

( ) ( )αωξ += tAt kk cos                                                             (133) 

where kA  is unknown amplitudes , and ω  is frequency, and α is phase. After introducing the notation: 








 −+= µκω 22
2

K
u

J
                                                                    (134) 

we obtain the following system of the homogeneous algebraic equations: 

( ) 02 11 =−−+− +− kkk AAuA                                                                (135) 

Now, for the amplitudes, we assume the following: 

 ϕkCAk sin=                                        

(136) 

and after introducing in the system (63) the algebraic equations  

      ( ) ( ) ( ) 01sinsin21sin =+−−+−− ϕϕϕ kCkCukC                                            (137a) 
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( ) 0sincos22 =−− ϕϕ kCu                                                   (137b) 

we obtain: 

  ( )ϕcos12 −=u                                                                          (137c) 

as well as: 

 ( )κµϕω −+= 22 sin2
2J

K
                                                                            (138) 

The solution (133) must satisfy boundary conditions for a different case of the ends of the double DNA 

fractional order chain model. For that reason, we must put indices s , and two subsets of the eigen circular 

frequencies of the corresponding main eigen chains are: 

  






 −+= κµ
ϕ

ω ξ
2

sin2
2

22 s
s

K

J
, ns ,....,3,2,1=                                        (139) 








 += µ
ϕ

ω η
2

sin2
2

22 s
s

K

J
 , ns ,....,3,2,1=                                                     (140) 

For the first main chain of the double DNA chain helix, the eigen amplitudes are in the form 
( )

ss

s

k kCA ϕsin=  and generalized main chain coordinates ( )tkξ  of the first main chain is possible to express 

by a set of the main normal coordinates ξζ s  in the following form: 

( ) ( ) ( ) ( ) ∑∑∑
===

=+=+=
n

s

ss

n

s

ssss

n

s

ss

s

kk ktkCtAt
111

sincossincos ϕζαωϕαωξ ξξξ     (141) 

                        nk ,....,3,2,1=  

Normal coordinates ξζ s  or normal modes of the first main chain are in the form 

 ( )
ssss tC αωζ ξξ += cos , ns ,....,3,2,1=                                          (142) 

with known frequencies (139) , and unknown amplitudes  sC  and phase sα  depending of initial conditions.  

The transformation of the subsystem (90) of the fractional order differential equations of the first main chain 

by introducing (140) yields: 

 [ ] 0sin
2

2

1

2 =






 ++∑
=

n

s

sstssss k
K

K
ϕζκζωζ ξ

σ
σξξξξ D

J

J ��  , ns ,....,3,2,1=             (143) 

where characteristic numbers expressing fractional order subsystem properties are in the following form: 

          






 −+= κµ
ϕ

κ σξ
2

sin2
2

2 s
s

K

J
 , ns ,....,3,2,1=                                       (144) 

 Taking into account that skϕsin  is equal to zero, only for the boundary conditions, then from (141) we can 

write that is necessary to be: 

[ ] 022 =++ ξ
σ

σξξξξ ζωζωζ stssss D�� , ns ,....,3,2,1=                                          (145) 

where sets of circular frequencies 
2

ξωs and a set of characteristic fractional order numbers 
2

σξωs  are in the 

following forms: 









−+= κµ

ϕ
ω ξ

2
sin2

2

22 s
s

K

J
, ns ,....,3,2,1=                                   (146) 









−== κ

ϕ
κκω σσξσξ

2
sin2

2

22 s
ss

KK

JJ
, ns ,....,3,2,1=                      (147) 

The previous system (145) of differential fractional order equations is independent containing one main 

chain coordinate ξζ s  and describing creep vibration modes of the n  independent partial fractional order 

oscillators, each of them with one degree of freedom. 

On the basis of the previous approach for the second subsystems of the second main chain, for the second 

main chain of the fractional order double DNA chain helix, the eigen amplitudes are in the form 
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( )
ss

s

k kDB ϕsin=  and generalized main chain coordinates ( )k tη  of the second main chain are possible to 

express by a set of the corresponding main normal coordinates ηζ s  in the following form: 

       ( ) ( ) ( ) ( ) ∑∑∑
===

=+=+=
n

s

ss

n

s

ssss

n

s

ss

s

kk ktkDtBt
111

sincossincos ϕζβωϕβωη ηηη    (148) 

                         1,2,3,....,k n=  

Normal coordinates or normal modes ( )tkη  of the second main chain of the fractional order double DNA 

helix chain are in the form: 

   ( )
ssss tB βωζ ηη += cos , ns ,....,3,2,1=                                               (149) 

with frequencies expressed by (138), and unknown amplitudes sB  and phase sβ  depending of initial 

conditions.  

The transformation of the second subsystem (91) of the differential equations of the second main chain by 

introducing (147) yields: 

 [ ] 0sin
2

2

1

2 =






 ++∑
=

n

s

sstssss k
K

K
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σ
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J
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where  








 −= µωκκ ησση
22

2 ss
K

J
 , ns ,....,3,2,1=                                           (151) 

 Taking into account that skϕsin  is equal to zero, only for the boundary conditions, then from (147), we can 

write that it is necessary to be: 

 [ ] 022 =++ η
σ

σηηηη ηωηωζ stssss D�� ; ns ,....,3,2,1=                                        (152) 

where sets of eigen circular frequencies 
2

ηωs  and a set of characteristic fractional order numbers 
2

σηωs  are in the 

following forms: 
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K ϕ
κω σση

J
= , ns ,....,3,2,1=                                            (154) 

We can see that previous subsystem of the fractional order differential equations (143) with respect to their 

main coordinates ηζ s , as in the previous case corresponding subsystem of the fractional order differential 

equations (152) with respect to their main normal coordinates ξζ s , are two subsystems with independent 

describing creep vibration modes of the n2  independent partial fractional order oscillators, each of them with 

one degree of freedom. Both obtained subsystems (143) and (147) of fractional order differential equations 

contain fractional order differential equations of the same type, each being the fractional order differential 

equations containing one main normal coordinate, ξζ s or ηζ s , and each of them with one degree of freedom. 

Then, we can conclude that we start with one fractional order double DNA helix chain system which is, in 

whole, with n2  degrees of freedom and n2  generalized independent angular coordinates 1,kϕ  and 2,kϕ . And 

using two subsystems of the main chain coordinates 2,1, kkk ϕϕξ −=  and 2,1, kkk ϕϕη +=  we obtained two 

independent subsystems, each with n  degrees of freedom, and with the corresponding subsystem of 

independent eigen main fractional order oscillators described by the corresponding sets of eigen main chain 

coordinates ξζ s or ηζ s , and by subsets of the n  eigen circular frequencies 
2

ξωs  and 
2

ηωs  and the corresponding 

creep properties parameters 
2

σξωs  and 
2

σηωs  for ns ,....,3,2,1= . 

         In order to solve the system of fractional order differential equations (145) and (152), we use an analogy 

between the obtained fractional order differential equations and the corresponding fractional order differential 

equation (E.4.1) in the Appendix E.4, and we can write (see [3] or [34]):   
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7.7.5. Visualization of the main modes of fractional order double DNA helix chain system free 

vibrations and corresponding partial fractional order oscillator modes  

Using the previous expressions (153)-(154) we can separate the following two pairs of the main 

modes of a fractional order double DNA helix chain system in the following forms: 

            a* the first pair for the first main chain of a fractional order double DNA helix chain system 

corresponds to the set of the  main coordinate ξζ s : 

  

a*M  

 

b*M  

c* M  
 

t  

( )α,2 tg  

α  

( )α,2 tg  

t  

α  

( )α,2 tg  

t  

α  

  

 
 

d*       

e*     

t  

( )α,1 tg  α  

( )α,3 tg  

α  

t  

 

f*  

   g*  
 

t  
( )α,5 tg  

α  

t  

( )α,4 tg  α  

 
     Fig.8.                                         Fig.9.                                                Fig.10. 

 

Fig. 8. Time functions ( )α,2 tg surfaces for different multi-plate transversal vibrations kinetic and creep material 

parameters in the space ( )( )αα ,,,2 ttg for interval 10 ≤≤α . 
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Fig. 9. Time functions: d* ( )α,1 tg  and e* ( )α,3 tg surfaces for the same multi-plate transversal vibrations kinetic 

and creep material parameters 2,1 22

0 == αωω  in the space ( )( )αα ,,,1 ttg , as well as in corresponding ( )( )αα ,,,1 ttg  for 

interval 10 ≤≤α . 

Fig. 10. Time functions: f* ( )α,4 tg  and g* ( )α,5 tg surfaces for the same multi-plate transversal vibrations kinetic 

and creep material parameters 2,1 22

0 == αωω  in the space ( )( )αα ,,,4 ttg , as well as in corresponding ( )( )αα ,,,5 ttg  for 

interval 10 ≤≤α . 
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contains two modes like cosine and corresponding sine, with a set of the circular frequencies j
s
2
ξω  and fractional 

order characteristic numbers k
s
2
σξω , with difference in phase analogous to that between cosine tsξωcos   and 

sinus tsξωsin  with the corresponding same circular frequency and difference in phase for / 2π . 

 b* the second pair for the second main chain of a fractional order double DNA helix chain 

system corresponding to the set of the main coordinate ηζ s : 
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contains two modes like cosine and the corresponding sine, with a set of the circular frequencies j
s
2
ηω  and 

fractional order characteristic numbers k
s
2
σηω , with difference in phase analogous to that between cosinus  

tsηωcos   and sinus tsηωsin   with the corresponding same circular frequency  and difference in phase for / 2π . 

      The previously listed analytical expressions (157)-(158) and (159)-(160) for the corresponding pairs of the 

first and second main chains fractional order modes of a fractional order double DNA helix chain system also 

correspond to n2  fractional order modes of the partial fractional order oscillators (145) and (152), each for one 

from the set of  n2  main coordinates ξζ s  and ηζ s  of a fractional order double DNA helix chain system. 

 
 

7.7.6. The double DNA fractional order chain forced vibration model on the basis of the 

linearized Kovaleva-Manevich's DNA model 
For the fractional order forced vibrations of a fractional order double DNA chain model on the basis of the 

linearized Kovaleva-Manevich's DNA model, we accept two chains, as presented in Fig. 6 or 7, in the form of 

the double chain fractional order system containing two coupled multi-pendulum subsystems, in which the 

corresponding material particles of the corresponding multi-pendulum chains are coupled by series of the same 

standard light fractional order elements. 

We assume that both coupled chains from the system of the fractional order DNA model are excited by 

the system of external excitation containing two series of the one frequency excitations in the forms 

tk.,k 1.1,0 cosΩM  and tk.,k 2.2,0 cosΩM , nk ,.....,3,2,1= , where 1,0 .,kM  and  2,0 .,kM   are amplitudes, 1.kΩ  and   

2.kΩ   are frequencies  of the external forced couples, each applied to one of the mass particles of the double 

DNA model coupled chains. 

Then, we can write the corresponding system of the fractional order differential coupled equations in 

the form: 
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The previous system is possible to rewrite in the following form: 
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 As our intention is to use the previous double DNA fractional order chain model for the case of the 

homogeneous system parameters, we take into account that: σ,,1kK = σ,2,kK =K. and σαβ ,K = σαβ ,K  and taking 

this into account, we introduce the notation (14) and (15) and then the previous system of coupled fractional 

order differential equations is possible to write in the following form: 
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where 
,K

K

αβ σ
σκ = . 

Using change of the generalized independent angular coordinates 1,kϕ  and 2,kϕ  for the k -th bases of both 

chains in the DNA model into the following new main chain coordinates kξ  and kη  by the following 

dependence-relations: 2,1, kkk ϕϕξ −=  and  2,1, kkk ϕϕη += , the previous system of fractional order differential 

equations (160) obtains the following form: 
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The first series (161) and second series (163) of the previous system (164)-(165) of the fractional order 

differential equations are decoupled and independent. Then, we can conclude that new main chain coordinates 

kξ  and kη  are the main chain coordinates of fractional order double DNA helix chain model system for forced 

vibration regimes and that we obtain two fictive decoupled eigen single fractional order chains of the double 

DNA fractional order model. This is also one of the fundamental conclusions as an important property of the 

fractional order homogeneous model of forced vibrations in a fractional order double DNA homogeneous 

helix. 

The systems of fractional order differential equations (164)-(165) contain two separate subsystems of 

fractional order differential equations expressed by main chain coordinates of kξ  and kη  which are the main 

chain coordinates of a fractional order double DNA chain helix forced vibration model and separate DNA 

fractional order model into two independent fractional order chains. 

 

 

7.7.7. Analytical solutions of the subsystems of the main chains fractional order differential 

equations for forced regime oscillations 
We solve the previous subsystems (164) and (165) using the Laplace transformations, as in section 7.3. After 

applying the Laplace transformations to the previous systems (164) and (165) of differential equation’s with 

fractional order derivative and having in mind that we introduced the notations ( ){ }tkξL  and ( ){ }tkηL  for the 

Laplace transformations, as well as that: (92), (93), (94) and (95) and also having in mind that we accepted the 

hypothesis that the initial conditions of fractional order derivatives of the system are given using: 
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where k0ξ  and k0ξ�  as well as k0η and k0η�  are initial angular positions and angular velocities defined by initial 

conditions of the system material particles dynamics in the chains at initial moment, we can write the following 

system of the equations with unknown Laplace transforms: 
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The previous system is possible to rewrite in the following form: 
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Now, we have two separate, uncoupled non homogeneous subsystems of the algebraic equations in the 

following forms: 
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or in the following forms: 
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Both subsystems are of the same form and it is necessary to solve one of the subsystems and applying the 

analogy it is easy to solve the other of the subsystem equations. For that reason, we can use the method 

proposed in the papers [32] and [31]. The determinate of the previous subsystem (174) as well as (165) is in the 

following form (104) as for the subsystems of algebraic equations (100) and (101) in section 7.3. 

The algebra no homogenous algebra equations (171) and (172) for special case as in section 7.3 are of the 

same form, as presented in (101) and (102), and we can write: 
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The determinates of the previous algebraic subsystems (180) as well as (181) are of the same form, as 

presented in (104). Introducing the notation ( ) ( )2,01,0
2

2,1
2

1,101011 ,,,,,, kkh hhphph ΩΩ+ ξξ ξξ �  and 

( ) ( )2,011,01
2

2,1
2

1,1101011 ,,,,,, hhphph ph ΩΩ+ ηη ηη  defined by (178) and (179), for the determinants ( )( )ξhv
k

,
~
∆ , we can 

write similar expressions, as defined by (105)-(109), changing the expressions  ( )0101,, ξξξ
�ph  by expressions 

( ) ( )2,01,0
2

2,1
2

1,101011 ,,,,,, kkh hhphph ΩΩ+ ξξ ξξ �  as well as by ( ) ( )2,011,01
2

2,1
2

1,1101011 ,,,,,, hhphph ph ΩΩ+ ηη ηη . 

To solve the system of the algebraic non-homogeneous equations (180) or (181) with respect to unknown 

Laplace transforms ( ){ }tkξL  or ( ){ }tkηL  of the time function main chain coordinates ( )tkξ  and ( )tkη - 

unknown normal chain coordinates of the system main chains for forced vibrations, we can use the Cramer 

approach in a similar way as in section 7.3. 

  

 

7.7.8. Forced eigen modes of the subsystems of the main chains of a fractional order double 

DNA helix chain system forced vibrations 
In this part, we start with two subsystems of fractional order differential equations (164) and (165) expressed by 

eigen a normal chain coordinates 2,1, kkk ϕϕξ −=   and  2,1, kkk ϕϕη += , and these subsystems can be rewritten 

in the following form: 

[ ] ( )[ ] thth
K
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2
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(182) 

( ) [ ] thth
K
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2
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σ Dkk1kk

J
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             1,2,3,.....,k n=                                                                                                          (183) 

Without loss of generality, our interest was focused next on considering two subsystems of the fractional 

order differential equations in the following form: 

       [ ] ( )[ ]
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            1,2,3,.....,k n=                                                                                       (184) 
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1cos
212
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1,2,3,.....,k n=                                                                                      (185) 

The previous two subsystems are for the case of fractional order forced vibrations of a double DNA helix chain 

system excited by a single frequency external couple t., 1,11,10 cosΩM , with amplitude 1,10 .,M  and frequency 1,1Ω , 

applied to the first  mass particle in the first chain of a double DNA helix chain system.  

The first series (184) and second series (185) of the previous system (164)-(165) of the fractional order 

differential equations for forced vibrations are decoupled and independent. Then, we can conclude that new 

coordinates kξ  and kη  are the main chain coordinates of fractional order double DNA helix chain model 

system for forced vibration regimes and that we obtain two fictive decoupled eigen single fractional order 

chains of the double DNA fractional order model. This is also one of the fundamental conclusions as an 

important property of the fractional order homogeneous model of  forced vibrations in a fractional order double 

DNA homogeneous helix.   

The systems of the fractional order differential equations (184)-(185) contain two separate subsystems of 

fractional order differential equations expressed by coordinates of kξ  and kη  which are the main chain 

coordinates of a fractional order double DNA chain helix forced vibration model and separate DNA fractional 

order chain  model into two independent fractional order main chains.  
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For the first main chain of the double DNA chain helix (184), the eigen amplitudes for free vibrations are in 

the form 
( )

ss

s

k kCA ϕsin=  and generalized coordinates ( )tkξ  of the first main chain for forced vibrations is 

possible to express by a set of this eigen main chain main coordinates ξζ s  for free vibrations (149) in the 

following form: 

( ) ∑
=

=
n

s

ssk kt

1

sin ϕζξ ξ                                                                                     (186) 

                               1,2,3,....,k n=     

and for the other main chain of the double DNA chain helix (185) generalized coordinates ( )tkη  of the second 

main chain for forced vibrations is possible to express by a set of this eigen main chain main coordinates ηζ s  

for free vibrations (146) in the following form: 

( ) ∑
=

=
n

s

ssk kt

1

sin ϕζη η                                                                           (187) 

Normal coordinates ξζ s  or normal modes of the first main chain for forced vibrations is possible to express in 

the form similar to that for free vibrations (142), but introducing the assumption that unknown amplitudes  sC  

and phase sα  depending of initial conditions are not constant, but functions of time, ( )tCs  and phase ( )tsα , and 

for fractional order system the main coordinates are in the form 

 ( ) ( ) ( )( )coss s st C t t tξ ξζ α= Ω + , ns ,....,3,2,1=                                   (188) 

with known frequencies (139), and unknown time functions - amplitudes ( )tCs  and phase ( )tsα  depending of 

time and initial conditions.  

Then, we introduce the expressions (186) and (187) and their corresponding second and fractional order 

derivative into the subsystem of the fractional order differential equations (184) and (185), and we obtain the 

following sub-systems:  
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After making group sublimations of some terms in the previous equations (189), we obtain the following 

subsystem: 
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                   1,2,3,.....,k n=  

Then, taking into account the denotations (144), (146) and (145), the previous subsystem of equation is possible 

to rewrite in the following form: 
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Taking into account that it is possible to develop, i.e. to express right hand side into series according to  

skϕsin  in the following series:  
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where  
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It is possible to rewrite the equations (192) in the following form: 

[ ] ( )( ) 0sincos
2
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1.11,1,0
22 =Ω−++∑
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s

ssstssss kth
K

ϕζωζωζ ξ
σ

σξξξξ D��J
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Then, taking into account that 0sin ≠skϕ , in a general case, from (195) it is possible to obtain the following 

subsystem of fractional order differential equations along main chain normal coordinates ξζ s in the following 

form: 

[ ] ( ) th sstssss 1.11,1,0
22 cosΩ=++ ξ

σ
σξξξξ ζωζωζ D�� , ns ,....,3,2,1=                                  (196) 

where 2
ξω s  square of eigen circular frequencies determined by expression (146) and 2

σξω s  the corresponding 

eigen characteristic numbers expressing fractional order subsystem properties, are determined by the expression 

(147).  

Analogously, using (187) and (180) from (190), it is possible to obtain the second subsystem of fractional 

order differential equations along main chain normal coordinates ηζ s in the following form: 

[ ] ( ) th sstssss 1.11,1,0
22 cosΩ=++ η

σ
σηηξη ζωζωζ D�� , ns ,....,3,2,1=                                  (197) 

where 2
ηωs  the square of eigen circular frequencies is determined by the expression (153) and 2

σηωs  the 

corresponding eigen characteristic numbers expressing fractional order subsystem properties are determined by 

the expression (154).  

Then, we have the system (196)-(197) containing two subsets of the main fractional order forced oscillators, 

each with n  fractional order differential equations along one main chain main coordinates ξζ s  and ηζ s . Each 

of these n2  fractional order differential equations contains only one main eigen coordinate ξζ s  or ηζ s   of the 

system. 

The system (196)-(197) represents the main fractional order forced oscillators along  the independent system 

of main chain main coordinates  ξζ s  or ηζ s  , ns ,....,3,2,1=  each with one circular frequency of external 

excitation and one eigen circular frequency  and one eigen characteristic number from one of the two sets of: 

ξωs  or ηωs  eigen circular frequencies determined by the expression (146) or (153)  and 2
σξω s  or  2

σηωs  the 

corresponding eigen characteristic  numbers expressing fractional order subsystem properties, determined by 

the expression (147) or (154). 

  All fractional order differential equations of the system (196)-(197) are the same type and it is possible to 

solve them in the same way using the Laplace transform ( ){ }tsξζL  and ( ){ }tsηζL . Applying the Laplace transform 

to the system (196)-(197) of the fractional order differential equations, we obtain the following two sub-

systems of equations: 
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Taking into account that:  
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and after introducing into the sub-systems (198)-(199) for the Laplace transform ( ){ }tsξζL  and ( ){ }tsηζL  of the 

system double DNA helix chain eigen main coordinates ξζ s  and ηζ s  for forced regime, we obtain: 
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Then, to obtain the system double DNA helix chain eigen main coordinates ( )tsξζ  and ( )tsηζ   it is necessary 

to apply the inverse Laplace transform to the expressions (205)-(206). Then we can write the following: 

 

( ) ( ) ( )ttt partsss ,hom, ξξξ ζζζ +=                                     (207) 

 and  

  ( ) ( ) ( )ttt partsss ,hom, ηηη ζζζ +=                                               (208) 

where  

a*) ( )ts hom,ξζ  and ( )ts hom,ηζ  are terms corresponding to the solutions of the homogeneous fractional 

order differential equations and the solutions are in the forms (155) and (156) (see Appendix (E.4.1)): 
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b* ) ( )tpars ,ξζ  and ( )tpars ,ηζ  are terms corresponding to particular solutions of the non-homogeneous 

fractional order differential equations system (196)-(197) and the solutions must be obtained as an inverse 

transform of the following expressions: 
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or in a developed form 
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7.8 Concluding remarks  
Finally, we can conclude that new main chain coordinates of kξ  and kη , nk ,...,3,2,1= k composed of the 

generalized independent coordinates in the way 2,1, kkk ϕϕξ −=  and 2,1, kkk ϕϕη +=  , nk ,...,3,2,1=  are the 

main chain coordinates of the main eigen chains of a  double DNA helix chain  system and that it is possible to 

obtain two fictive decoupled and separated eigen single chains of the double DNA chain helix linear model as 

well as fractional order model. This is an important fundamental conclusion as a significant property of the 

linear model of vibrations in a double DNA helix. Considered as a linear or fractional order mechanical system, 

DNA molecule as a double helix chain system has its eigen circular frequencies and that is its characteristic. 

Mathematically, it is possible to decouple it into two chains with their eigen circular frequencies which are 

different. This may correspond to a different chemical structure (the order of base pairs) of the complementary 

chains of DNA. We are free to propose that each specific set of base pair order has its eigen circular frequencies 

and it changes when DNA chains are coupled in the system of double helix. DNA as a double helix in a living 

cell can be considered as nonlinear system but under certain conditions its behavior can be described by linear 

dynamics.  

Then, analytical expressions of the square of sω  - eigen circular frequencies of the vibration modes of the 

separate chains of the homogeneous double DNA chain helix are obtained. By using these results it is easy to 

consider these values of the system sω  - eigen circular frequencies of free vibrations as series of resonant 

frequencies under external multi frequencies excitations, and also possibilities for the appearance of dynamical 

absorption phenomena and find explanation with real processes in the homogeneous double DNA chain helix.  

By using superposition’s of these solutions for the case that external excitation are with the same amplitudes 

and frequencies from the system of differential equations, we can see that for this case of external one 

frequency excitation in one eigen main chain there appear pure free vibrations with eigen subset of circular 

frequencies of its free vibrations, and in the other there appear forced vibrations. This conclusion is possible to 

generalize for the same multi-frequency external excitations applied to each of the material particle pairs in 

double DNA helix chain system. Eigen main chain in which there occur pure free vibrations with eigen subset 

of circular frequencies of its free vibrations may correspond with real chain of DNA that is not used as a 

template in the process of transcription- sense strand. The eigen main chain that oscillates in forced regime may 

correspond with real antisense strand of DNA –one that is transcribed. 
* Dynamical absorption on the first pair of the main coordinates of the main chains appear on the 

resonate circular  frequencies  of the set of the double DNA helix chain system with one pair of the material 

particles less compared to the considered real system. 

* Dynamical absorption on the second pair of the main coordinates of the main chains appear on the 

resonate circular frequencies of the set of the double DNA helix chain system with two pairs of the material 

particles compared to the considered system. 

This mathematical fact is important to consider in the light of the interruption or break of the double DNA 

helix chain system. In order to transcribe specific DNA sequence, RNA polymerase has to recognize the 

specific region of DNA where the sequence starts. Promoter regions make the recognition possible. We are free 

to suggest that, from the mechanical point of view, if specific one frequency excitation caused by RNA 

polymerase is the same as eigen oscillatory frequency of specific promoter region resonance appears, that is the 

condition for starting the transcription from the mechanical point of view. This means that every gene has its 

specific “starting” oscillatory frequency that will correspond with one frequency external excitation. This may 

also correspond with spatially localized solitons in Soliton –existence supporting models of DNA. 

Our next considerations will focus on the small nonlinearity in the double DNA chain helix vibrations and 

rare nonlinear phenomena such as resonant jumps and energy interactions between nonlinear modes. 
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