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Article

Phenomenological mapping and
dynamical absorptions in chain systems
with multiple degrees of freedom

Katica R Stevanović Hedrih1,2 and Andjelka N Hedrih3

Abstract

Using Mihailo Petrović’s theory of mathematical phenomenology elements, phenomenological mapping in vibrations,

signals, resonance and dynamical absorptions in models of dynamics of chain systems – the abstractions of different real

dynamics of a chain system are identified and presented. Using a mathematical description of a chain mechanical system

with a finite number of mass particles coupled by linear elastic springs and a finite number of degrees of freedom

expressed by corresponding generalized independent coordinates, translator displacements and corresponding analysis

of solutions for a free and forced vibrations series of multi-frequency regimes and resonant states as well as dynamical

absorption states are identified. Using mathematical analogy and phenomenological mapping, analyses of the dynamics of

other chain models are made. Phenomenological mapping is used to explain dynamics in systems with multiple deform-

able bodies (beams, plates, membranes or belts) through resonance and dynamical absorptions in the system and transfer

of mechanical energies between bodies. Amplitude-frequency graphs for homogeneous and non-homogeneous chain

systems are presented for a system with 11 degrees of freedom. Expressions for generalized coordinates of a chain non-

homogeneous system in resonance regimes for a general case are derived. A theorem is defined and proven.
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1. Introduction

In two books Mihailo Petrović Alas presented a theory
containing elements of mathematical phenomenology
and phenomenological mapping (Petrović, 1911,
1933). Both publications were published in Serbian,
and only a small number of his contemporaries were
able to read and understand this theory. Alas’s theory
defines two types of analogy: qualitative and mathem-
atical analogy. In the time of expansion of computers
and software tools, Roger Penrose (1989) and James
Gleick (1987) had similar ideas that were later applied
in graphical-computer techniques.

Phenomenological mapping of phenomenons and
models enables multiple dynamics of system models
of disparate natures to be described by a single math-
ematical model: for example an electric chain model
and a model of a mechanical chain with the same
degree of dynamics freedom.

Both the mechanical signal through a chain and an
electrical signal can be described with the same

equations, although they describe different physical
phenomena. In both systems a set of circular frequen-
cies, resonance, dynamical absorption and signal filter-
ing are in question regardless of whether it is
mechanical motion or an electrical signal.

This approach makes possible an integration of sci-
entific knowledge and a reduction of the qualitative
models or corresponding mathematical models that
are needed. Hence, it is possible to describe the dynam-
ics of real systems with various physical properties,
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using phenomenological mapping to map the phenom-
ena from one system to another.

On the basis of this theory it is possible to integrate
contemporary knowledge obtained in various areas
of sciences and identify analogous dynamics and
phenomena.

As far we know, there are few studies available in the
literature discussing phenomenological mapping: in
mathematics (Frazer, 1961; Freudenthal, 1986;
Pettifor, 1986), from the area of neuroscience (Walsh,
1995) or as a part of string theory and its applications
(Kelebanov and Maldacena, 2009). String theory is a
self-contained mathematical model that describes all
fundamental forces and forms of matter.

In classical books, the dynamics of chain systems are
usually described as systems for up to three degrees of
freedom (d.f.).

Pfeiffer et al. (1997) gave examples of chain dynam-
ics in practical engineering problems (machine compo-
nents in cars, in gears, and in armored vehicles). The
dynamics of chains are typically characterized by free
motion and contact processes, which may include
impacts and friction. Therefore, modeling by multi-
body theory augmented by methods of contact mech-
anics represents an appropriate way to evaluate
dynamic chain behavior. Different types of resonance
in linear and nonlinear system forced dynamics are very
important phenomena in linear and nonlinear system
forced dynamics. The results of investigations of pri-
mary and secondary resonances of the first mode in
MEMS electrostatic microactuators are presented by
Najar et al. (2010). These authors use a discretization
technique that combines the differential quadrature
method and the finite difference method for space and
time, respectively, to study the dynamic behavior of a
microbeam-based electrostatic microactuator. The
method is applied for large excitation amplitudes and
large quality factors for primary and secondary reson-
ances of the first mode in the case of hardening-type
and softening-type behaviors. The occurrence of
dynamic pull-in due to subharmonic and superharmo-
nic resonances is identified. Also, it is identified that the
excitation amplitude is increased. Simultaneous reson-
ances of the first and higher modes are identified for
large orbits in both primary and secondary resonances.
Filipovic and Schroder (1999) gave a concept of the
linear active resonator as a vibration absorber. It is
formed of a classical passive absorber with a simple
dynamic linear feedback. These authors investigated
vibration absorption with linear active resonators, con-
taining continuous and discrete time design and ana-
lysis. Ekwaro-Osire and Desen (2001) investigated the
effects of mass ratio, clearance, and excitation ampli-
tude on the dynamics of a system and the effectiveness
of impact vibration absorbers. The experimental studies

were carried out for both free and forced vibrations.
For free vibrations, the effects of system parameters
on the rate of decay of vibrations were shown.

Models of resonance and dynamical absorption in
chain system forced dynamics in pure linear systems
with more then three d.f. are missing in the world lit-
erature. As far as we know there are no results for
qualitative analogy and mathematical analogy between
the dynamics of chain systems with more than three
d.f.. Investigating resonance and dynamical absorption
in dynamics in chain systems with more than three d.f.
using phenomenological mapping even in the area of
classical and linear chain forced dynamics is important
not only for mechanical signal processing, but also for
electrical signal processing and signal filtering, for pro-
cessing biodynamical signals in life systems (DNA
double chain helix (Hedrih (Stevanović) and Hedrih,
2010), biodynamical chain oscillators (Hedrih, 2011,
2012) and also for teaching in university and for inte-
grations of scientific results in different areas of science.

For all the reasons mentioned above the aim of our
research was to investigate classical models of free and
forced dynamics in linear chains with a finite number of
d.f., and with corresponding numerical analysis of a
system with 11 d.f.; to analyze the existence of dynam-
ical absorption at an amplitude of mass particles’ dis-
placement in a forced regime of the system’s vibrations.

The phenomenon defined as dynamical absorption
appears only in conservative systems with two and
more d.f. in forced regimes when a single frequency
force is applied at one mass particle, and this mass par-
ticle is at forced rest, and other mass particles in the
system vibrate in forced regimes. As far as we know,
this phenomenon is not described in enough detail or
investigated in the literature for systems with more than
three d.f., as well as numerous resonances. This forced
vibration phenomena is taken into considertion. Also,
we derived expressions for solutions for mass particle
resonant displacements.

Elements of mathematical phenomenology – quali-
tative and mathematical analogy – are used to make a
transfer for all results obtained for forced dynamics of a
mechanical chain system to other chain systems, such as
a torsion chain system (gear chain machines), a multi-
pendulum chain system, an electrical circle chain sys-
tem’s forced vibrations, and the dynamics of DNA
helix (Hedrih (Stevanović) and Hedrih, 2010). Also,
chain dynamics is analagous qualitatively and mathem-
atically with the forced vibrations of an elastically
coupled multi-deformable body system (coupled
beams, coupled plates, coupled belts, coupled mem-
branes, for the same boundary conditions) (Hedrih
(Stevanović), 2006a,b, 2008a,b).

Rašković (1952, 1972, 1974) gave a series of exam-
ples of electromechanical mathematically analogous
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vibration systems that were mathematically described
and solved for free vibrations. Hedrih (Stevanović)
(1991) presents the analogy between vector models of
stress state, strain state and state of the body mass iner-
tia moments. Ideas of mathematical phenomenology
and phenomenological mappings, from listed refer-
ences, are used for investigating the dynamics and
vibration phenomena of resonance and dynamical
absorption for solving a series of research problems
of dynamics of various kinds of chain systems.

Four mathematically analogous chain systems with
qualitative analogous vibration phenomena (dynamical
absorptions, resonance, and sets of eigen circular fre-
quencies) are presented in Figure 1. In Figure 1(a) a
chain mechanical system with a finite number of mass
particles with masses mk, coupled by springs with rigid-
ity ck and a finite number of d.f. expressed by corres-
ponding generalized independent coordinates –
translator displacements xk, k ¼ 1, 2, . . . ,N is pre-
sented; in Figure 1(b) a chain mechanical torsion
system with a finite number of disks with mass inertia
axial moments Jk coupled by a shaft with different tor-
sion rigidity ck and a finite number of d.f. expressed by
generalized angular coordinates ’k, k ¼ 1, 2, . . . ,N is
presented; in Figure 1(c) a chain mechanical multi-pen-
dulum system with a finite number of mass particles
with masses mk, on the same length ‘ coupled with
spring rigidity ck and a finite number of d.f. expressed
by generalized angular coordinates ’k, k ¼ 1, 2, . . . ,N is
presented; and in Figure 1(d) a chain electrical circuit
system with a finite number of coil inductances Lk

coupled by capacitor capacitances Ck and a finite
number of d.f. expressed by generalized coordinates –
electrical charge of capacitor qk, k ¼ 1, 2, . . . ,N or velo-
city of generalized coordinate – ik ¼

dqk
dt , k ¼ 1, 2, . . . ,N

intensity of electric current flowing through the branch
circuits is presented. The dynamics of previously listed
chain system models presented in Figure 1 may be
described by the same type of system of ordinary dif-
ferential equations. Between systems, we identify elem-
ents of mathematical analogy and the following
elements of mathematical phenomenology. It is
enough to write a system of ordinary differential equa-
tions for free and forced dynamics of a chain mechan-
ical system presented in Figure 1(a), find corresponding
solutions with graphical presentations, and after iden-
tifying characteristic phenomena, by phenomenological
mapping it is possible to make analysis of the dynamics
of all the other three systems.

2. Free vibrations of homogeneous
chains

Homogeneous mechanical chains as well as electrical
chains are used as filters and they may miss certain

frequencies or frequency ranges (Rašković, 1952,
1974; Hedrih (Stevanović), 1991). Depending on the
range of frequencies that may be missing there are
low-frequency and high-frequency filters.

Figure 1. Analogous chain systems: (a) Chain mechanical

system with finite number of mass particles with masses mk,

coupled by springs with rigidity ck and finite number of degrees of

freedom expressed by corresponding generalized independent

coordinates – translator displacements xk, k ¼ 1, 2, . . . , N; (b)

Chain mechanical torsion system with finite number of disks with

mass inertia axial moments Jk coupled by shaft with different

torsion rigidity ck and finite number of degrees of freedom

expressed by generalized angular coordinates ’k, k ¼ 1, 2, . . . , N;

(c) Chain mechanical multi-pendulum system with finite num-

ber of mass particles with masses mk, on the same length ‘
coupled with spring rigidity ck and finite number of degrees of

freedom expressed by generalized angular coordinates ’k,

k ¼ 1, 2, . . . , N; (d) Chain electrical circuit system with finite

number of coil inductances Lk coupled by capacitor capacitances

Ck and finite number of degrees of freedom expressed by gen-

eralized coordinates – electrical charge of capacitor qk,

k ¼ 1, 2, . . . , N or velocity of generalized coordinate – ik ¼
dqk

dt
,

k ¼ 1, 2, . . . , N intensity of electric current flowing through the

branch circuits
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In Rašković (1952) a system of the ordinary differ-
ential equations of the dynamics of a homogeneous
chain mechanical linear system is solved by using a
trigonometric method for different cases of springs at
both ends. Using these results for free vibrations of a
chain with both ends fixed (x0 ¼ 0, xNþ1 ¼ 0) described
by following system of ordinary differential equations

m

c
€xk ¼ � xk � xk�1ð Þ þ xkþ1 � xkð Þ, k ¼ 1, 2, . . . ,N

ð1Þ

we can write the following:
� set of eigen circular frequencies of homogeneous
chain system free oscillations in the form

!s ¼ 2

ffiffiffiffi
c

m

r
sin
’s
2
¼ 2

ffiffiffiffi
c

m

r
sin

s�

2 Nþ 1ð Þ
where

s ¼ 1, 2, 3, . . . ,N

ð2Þ

and
� solutions of a system of ordinary differential equa-
tions (1) of a homogeneous chain system free oscil-
lations in the form

xk ¼
Xs¼N
s¼1

�s tð Þ sin
ks�

Nþ 1ð Þ
¼
Xs¼N
s¼1

K
sð Þ
Nk�s tð Þ, k ¼ 1, 2, 3, . . . ,N

ð3Þ

which present mass particle longitudinal multi-fre-
quency vibration displacements, and in which �s tð Þ are
eigen main coordinates of system dynamics in the form

�s tð Þ ¼ Ds cos !stþ �sð Þ, s ¼ 1, 2, 3, . . . ,N ð4Þ

where Ds and �s are integral constants depending
on initial conditions. By the use of cofactors
K

sð Þ
Nk ¼ sin ks�

Nþ1ð Þ
it is correct to form eigen main vectors

and corresponding modal matrix in the form

R ¼ K
sð Þ
Nk

� �# k¼1,2,3, ...,N

! s¼1,2,3, ...,N
¼ sin

ks�

Nþ 1ð Þ

� �# k¼1,2,3, ...,N

! s¼1,2,3, ...,N

ð5Þ

and in matrix form express independent generalized
coordinates xk tð Þ by eigen main coordinates �s tð Þ

xk tð Þ
� �# k¼1,2,3, ...,N

¼

K
sð Þ
Nk

� �# k¼1,2,3, ...,N

! s¼1,2,3, ...,N
�s tð Þ
� �# s¼1,2,3, ...,N ð6Þ

As it is for: N!1 !1 ¼ lim
N!1

2
ffiffiffi
c
m

p
sin �

2 Nþ1ð Þ
¼ 0 and

lim
N!1

!N ¼ lim
N!1

2
ffiffiffi
c
m

p
sin N�

2 Nþ1ð Þ
¼ 2

ffiffiffi
c
m

p
, then it can be

concluded that for homogeneous chains with both

ends fixed, a set of eigen circular frequencies is in the

interval !s 2 ð0, 2
ffiffiffi
c
m

p
Þ.

Kinetic and potential energies for free vibrations of
the considered homogeneous chain system are

Ekin ¼
1

2

Xk¼N
k¼1

mk _x2k

¼
1

2
_xð ÞA _xf g ¼

1

2
_�s
	 


R0AR _�s
� �

¼
1

2
m _�s
	 


~A _�s
� �
¼

1

2
_&sð ÞI _&sf g

ð7Þ

~A ¼ R0AR

¼ sin
ks�

Nþ 1ð Þ

� �# s¼1,2,3, ...,N

! k¼1,2,3, ...,N

A sin
ks�

Nþ 1ð Þ

� �# k¼1,2,3, ...,N

! s¼1,2,3, ...,N

¼ diag assð Þ

ð8Þ

The potential energy of the system is in the form

Epot ¼
1

2

Xk¼Nþ1
k¼1

ck xk � xk�1ð Þ
2
¼

1

2
xð ÞC xf g

¼
1

2
�sð ÞR

0CR �sf g ¼
1

2
m �sð Þ ~C �sf g

¼
1

2
&sð Þ� &sf g ð9Þ

~C ¼ R0CR

¼ sin
ks�

Nþ 1ð Þ

� �# s¼1,2,3, ...,N

! k¼1,2,3, ...,N

�C sin
ks�

Nþ 1ð Þ

� �# k¼1,2,3, ...,N

! s¼1,2,3, ...,N

~C ¼ diag cssð Þ

ð10Þ

� ¼ diag !2
s

	 

¼ diag

css
ass

� �
, s ¼ 1, 2, 3, . . . ,N ð11Þ

The total mechanical energy of the homogeneous chain
system for free vibration regimes is

E ¼ Ekin þ Epot

¼
1

2

Xk¼N
k¼1

mk _x2k þ
Xk¼Nþ1
k¼1

ck xk � xk�1ð Þ
2

" #
¼ const
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E ¼
1

2
_xð ÞA _xf g þ

1

2
xð ÞC xf g

¼
1

2
m _�s
	 


~A _�s
� �
þ
1

2
m �sð Þ ~C �sf g

¼
1

2
_&sð ÞI _&sf g þ

1

2
&sð Þ� &sf g ¼ const

ð12Þ

Where I ¼ diagð 1 1 . . . 1 Þ is unit diagonal matri-
ces, � ¼ diag !2

1 !2
2 . . . !2

11

	 

is the matrix of the

square of eigen circular frequences,
�s tð Þ ¼ Ds cos !stþ �sð Þ is the eigen main coordinate,
and &s tð Þ ¼ ~Ds cos !stþ �sð Þ, is the eigen normal coord-
inate, Ds, ~Ds and �s are integral constants determined
by initial conditions. Total mechanical energy of the
mode eigen circular frequency !s as a sum of kinetic
and potential energy is in the form

Es ¼
1

2
m _�2s tð Þ þ !2

s �
2
s tð Þ

� �

¼
1

2
_&2s tð Þ þ !2

s&
2
s tð Þ

� �
ð13Þ

Es ¼ 2c sin2
s�

2 Nþ 1ð Þ
D2

s ¼ constatnt ð14Þ

If the homogeneous chain system is nonlinear with non-
linear cubic nonlinearities of the ideal elastic springs
between mass particles:

. Potential energy of the free dynamics of system is in
the form

Epot ¼
1

2

Xk¼Nþ1
k¼1

ck xk � xk�1ð Þ
2

þ
1

4

Xk¼Nþ1
k¼1

~ck xk � xk�1ð Þ
4

ð15Þ

. The total mechanical energy of the dynamics of a
nonlinear chain system for free vibrations is in the
form

E ¼ Ekin þ Epot

¼
1

2

Xk¼N
k¼1

mk _x2k

þ
1

2

Xk¼Nþ1
k¼1

ck xk � xk�1ð Þ
2

þ
1

4

Xk¼Nþ1
k¼1

~ck xk � xk�1ð Þ
4
¼ const ð16Þ

Using eigen main coordinates of corresponding linear
generalized coordinates of a nonlinear chain system in
the form (3) and taking into account that these eigen
main coordinates �s tð Þ are unknown functions of time in
the form �s tð Þ ¼ Ds tð Þ cos !stþ �s tð Þð Þ and in which
amplitude Ds tð Þ and phase �s tð Þ are functions of time
defined by a system of ordinary differential equations in
corresponding asymptotic approximation, it is possible
to write an expression for total mechanical energy
of the dynamics of the nonlinear chain system in the
following form

E ¼ Ekin þ Epot

¼
1

2
m _�s
	 


~A _�s
� �
þ
1

2
m �sð Þ ~C �sf g

þ
1

4

Xk¼Nþ1
k¼1

~ck
Xs¼N
s¼1

K
sð Þ
Nk � K

sð Þ
N k�1ð Þ

D E
�s tð Þ

 !4

¼ const

ð17Þ

By analyzing the previous expression, we can make
conclusions in the form of two well known theorems:

Theorem 1. Total mechanical energy of free nonlinear
vibrations of a mechanical chain system with a finite
number of mass particles coupled by nonlinear ideal
elastic springs is constant for all vibrations and equal
to the total mechanical energy of the system at the ini-
tial moment. There are transfers of energy between
mass particles as well as from kinetic energy to poten-
tial energy and the opposite way round.

Theorem 2. Total mechanical energy carried by s-th
nonlinear main mode in nonlinear chain mechanical
dynamics of a system is not constant, and there are
interactions and transfers of energy between each s-th
and r-th nonlinear main modes. The sum of all total
mechanical energies carried by all nonlinear main
modes in the nonlinear chain mechanical dynamics of
a system for free vibrations is constant, and equal to the
total mechanical energy of the system at the initial
moment.

3. Forced vibrations of homogeneous
chains

Consider the forced vibrations of a homogeneous
mechanical chain with 11 mass particles and 11 d.f.
presented in Figure 1(a) and excited by external one
frequency excitation F3 tð Þ ¼ F03 cos �3tþ �03ð Þ, ampli-
tude F03, circular frequency �3, and phase �03, applied
to the third mass particle along a longitudinal chain
direction. Taking denotation h3 ¼

F03

c , a system of

Hedrih and Hedrih 5
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ordinary differential equations for forced longitudinal
vibrations is in the following form

m

c
€xk ¼ � xk � xk�1ð Þ

þ xkþ1 � xkð Þ þ �3kh3 cos �3tþ �03ð Þ

k ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

ð18Þ

where �3k is the Kronecker symbol.
Suppose that the particular solutions of the previous

system (18) of ordinary differential equations is in the
form

x pð Þk ¼ Ck cos �3tþ �03ð Þ ð19Þ

then taking denotation v3 ¼
m
c �2

3 it is possible to write
the determinant of the obtained non-homogeneous
algebra equations along unknown amplitudes Ck

Corresponding sub-determinants �k v3ð Þ,
k ¼ 1, 2, 3, 4, . . . , 11: it is possible to obtain by substi-
tuting the corresponding k-th column by column �3kh3f g

containing the non-zero element h3 into the determin-
ant of system � v3ð Þ expressed in (20). Where h3 is the
reduced amplitude of external excitation force applied
to the third mass particle of the chain system. It can be
written for the first subdeterminant �1 v3ð Þ

On the basis of Cramer Low, unknown amplitudes
of particular solutions are possible to write in the fol-
lowing form

C 3ð Þk v3ð Þ ¼
�k v3ð Þ

� v3ð Þ
, or in the form C 3ð Þk �2

3

	 

¼

�k �2
3

	 

� �2

3

	 

where v3 ¼

m

c
�2

3

ð22Þ

And a particular solution is in the following form

x pð Þk ¼
�k �2

3

	 

� �2

3

	 
 cos �3tþ �03ð Þ ð23Þ

General solutions of the system of ordinary differential
equations (18) of a homogeneous chain system and for

non-resonance relations

�3 6¼!s¼ 2

ffiffiffiffi
c

m

r
sin

s�

2 Nþ1ð Þ
where s¼ 1,2,3, . . . ,N

ð24Þ

� v3ð Þ ¼

2� v3 �1
�1 2� v3 �1

�1 2� v3 �1
�1 2� v3 �1

�1 2� v3 �1
�1 2� v3 �1

�1 2� v3 �1
�1 2� v3 �1

�1 2� v3 �1
�1 2� v3 �1

�1 2� v3

















































ð20Þ

�1 v3ð Þ ¼ �h3

�1
2� v3 �1

�1 2� v3 �1
�1 2� v3 �1

�1 2� v3 �1
�1 2� v3 �1

�1 2� v3 �1
�1 2� v3 �1

�1 2� v3 �1
�1 2� v3













































ð21Þ
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are in the following form

xk ¼
Xs¼N
s¼1

Ds cos !stþ �sð Þ sin
ks�

Nþ 1ð Þ

þ
�k �2

3

	 

� �2

3

	 
 cos �3tþ �03ð Þ; k ¼ 1; 2; 3; . . . ;N

ð25Þ

where Ds and �s are integral constants depending on
initial conditions.

The previous general solution (25) of the system of
ordinary differential equations (18) of a homogeneous
chain system and for any resonance relations, when

�3,res,s ¼!s ¼ 2

ffiffiffiffi
c

m

r
sin

s�

2 Nþ 1ð Þ
where s¼ 1,2,3, . . . ,N

ð26Þ

is not valid for any possible resonance relations.
Consider one of these possible resonance relations

between system parameters. Then, take into account
general solutions of the system of ordinary differential
equations (18) of the homogeneous chain dynamics of
the system for one of the possible resonance relations,
when

�3,res,M ¼ !M ¼ 2

ffiffiffiffi
c

m

r
sin

M�

2 Nþ 1ð Þ
where s ¼M

ð27Þ

The general solution for that resonance case is obtained
in the following form

xk¼
Xs¼N
s¼1

1

Rj j

Xj¼N
j¼1

�1ð Þsþr Rjs



 

 x0jcos!st�
_x0j
!s

sin!st

� �* +
sin

ks�

Nþ1ð Þ

�
1

2!2
M�M !2

M

	 
 �Xs¼N
s¼1

1

Rj j

� Xj¼N
j¼1

�1ð Þsþr Rjs



 

 !M

d�j �2
3

	 

d�3

� �
�3¼!M

"

� cos �03ð Þcos!st�
!M

!s
sin �03ð Þsin!st

� ��
sin

ks�

Nþ1ð Þ

�

�
1

2!2
M�M !2

M

	 
 �Xs¼N
s¼1

1

Rj j

Xj¼N
j¼1

�1ð Þsþr Rjs



 

!M�j !
2
M

	 

�

*"

� cos �03ð Þcos!st�
1

!s
sin �03ð Þsin!st

� ��
sin

ks�

Nþ1ð Þ

�

�
1

2!2
M�M !2

M

	 
 !M

d�k �2
3

	 

dt

� �
�3¼!M

cos !Mtþ�03ð Þ

"

� !Mth i�k !
2
M

	 

sin !Mtþ�03ð Þ

�
k¼1,2,3,...,N

ð28Þ

From the obtained expressions (28) for mass particle
displacements for where resonance at eigen circular fre-
quency is �3,res,M ¼ !M, we can identify a term in the
form !Mth i sin !Mtþ �03ð Þ in all coordinates displace-
ments of mass particles along a longitudinal direction
of chains, which has a tendency to increase linearly with
time and for a long time period tends to infinity. This
phenomenon is similar to the resonant regimes of the
dynamics of a system with one degree of freedom. Then
elongation of the mass particle displacements in the
resonant regime increases and the system has to quickly
change the external excitation circular frequency to
return it to a regime of stable multi-frequency oscilla-
tions, with bounded elongations.

Theorem 3. In the linear chain system forced dynamics,
resonance regimes appear when external excitation cir-
cular frequency is equal to one of the eigen circular
frequencies. Then the maximum number of resonance
regimes is possible and it is equal to the number of d.f.
of oscillations of the system. In resonance regimes,
elongations of mass particles increase linearly and
tend to infinity, but it is not infinite for a short time-
frame immediately after the resonant regimes started.
Then it is necessary to change the external excitation
circular frequency so that it is different from any eigen
circular frequencies of free system vibrations. It is rec-
ommended to take out the system of the resonant
regime as soon as possible. If the system is in a resonant
regime for a long period of time, elongations will
become too big. Dynamical absorption occurs when
the amplitude of a particular solution is equal to zero:

C 3ð Þk �2
3

	 

¼

�k �2
3

	 

� �2

3

	 
 ¼ 0, for k ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

ð29Þ

A paradox that for some values of external excitation
frequency of applied force to the certain mass particle,
the mass particle is in a forced state of dynamical
absorption, seems to be very interesting. Hence, this
mass particle does not have a forced component with
external excitation frequency and vibrates only with
eigen circular frequencies excited by initial perturbation
of the equilibrium state. If there is no initial perturb-
ation of the equilibrium state, the third mass particle
rests, as a paradox, continuously when it is under the
action of this external one frequency excitation.

As homogeneous chains are used as filters, it is useful
to consider kinematical excitation at the end of mech-
anical or electrical chain systems. Using the results
from Hedrih (Stevanović) (2006b), kinematical (rheo-
nomic) excitation may be defined by displacement of
the left end of a spring in the form: x0 ¼ A0 cos�t.
Then this task is defined as: m

c
€xk ¼

Hedrih and Hedrih 7

 at KoBSON on August 17, 2015jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com/


XML Template (2014) [15.3.2014–3:23pm] [1–19]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/JVCJ/Vol00000/140040/APPFile/SG-JVCJ140040.3d (JVC) [PREPRINTER stage]

� xk � xk�1ð Þ þ xkþ1 � xkð Þ, k ¼ 1, 2, . . . ,N with
boundary conditions: x0 ¼ A0 cos�t and xNþ1 ¼ 0.
All mass particles will oscillate in a forced regime by
the same external kinematical excitation circular fre-
quency �, but with different amplitude (Rašković,
1952, 1974; Hedrih (Stevanović), 1991):
xk ¼ Ak cos�t. Suppose that amplitude Ak is taken in
the form Ak ¼ D sin k’þ �ð Þ. From boundary condi-
tions it is easy to obtain the following relations:

A0¼Dsin�, �¼ s�� Nþ1ð Þ’ and

Ak

A0
¼
�1ð Þsþ1Dsin Nþ1�kð Þ’

�1ð Þsþ1Dsin Nþ1ð Þ’
¼
sin Nþ1�kð Þ’

sin Nþ1ð Þ’
¼ �dk

for k¼ 1,2,3,4,5,6,7,8,9,10,11

ð30Þ

�dk is the dynamic factor for each mass particle of the
homogeneous chain displacements (Rašković, 1974).
Where chains are excited kinematically by
x0 ¼ A0 cos�t, expressions for mass particle displace-
ments are

xk ¼ Ak cos�t ¼ A0
sin Nþ 1� kð Þ’

sin Nþ 1ð Þ’
cos�t

for k ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

ð31Þ

4. Analysis of amplitude frequency
graphs for homogeneous chain
dynamics excited by one frequency
external excitation applied to athird
mass particle

Numerical analysis of kinetic frequency parameters of
the homogeneous chain dynamics of a system with 11
d.f. for free and forced vibration analytically described
in previous sections was performed by two sets of
numerical data of system parameters. The first numer-
ical data are for the system at macro level, each mass
particle has the same mass, mk ¼ m ¼ 1½kg�, and all
springs have the same coefficient of rigidity
ck ¼ c ¼ 1 ½N=m� ¼ 1 kg= sec2

� �
.

The second numerical data are for the system at
nano level, the mass particles are with the
same masses mk ¼ m ¼ 137, 842 � 10�12½kg�, and all
springs have the same coefficient of rigidity
ck ¼ c ¼ 246, 75 ½N=m�.

In Figure 2, two characteristic frequency curves with
11 roots – a homogeneous chain system eigen charac-
teristic number (square values of eigen circular frequen-
cies) for free vibrations are presented. In Figure 2(a) a
characteristic frequency curve with 11 roots for a mech-
anical chain system with 11 mass particles at nano level
is presented. These roots are x1¼ 0,0675; x2¼ 0,27;
x3¼ 0,585; x4¼ 1,01; x5¼ 1,48; x6¼ 2,005;
x7¼ 2,515 x8¼ 3,0; x9¼ 3,41; x10¼ 3,735; x11¼ 3,93.

Figure 2. Characteristic frequency curves with 11 roots – homogeneous chain system eigen characteristic numbers (square values

of eigen circular frequencies) for free vibrations. (a) for mechanical chain system with 11 mass particles; (b) for mechanical chain

torsion system with 11 disks on the shaft
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Figure 3. Eleven amplitude-frequency resonant curves of a homogenous chain system at nano level with 11 degrees of freedom for

11 generalized coordinate forced vibrations under the action of one frequency: external excitation applied to the third mass particle

in chain or external electric voltage applied to the third electric sub-circuit to the coil inductor and capacitor or external mechanical

couple applied to the third pendulum in the chain’s multi-pendulum system
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In Figure 2(b) a characteristic frequency curve
with 11 roots for a mechanical chain torsion system
with 11 disks on the shaft is presented by using an
analogy between systems (presented in Figure 1(a)
and (b)). Numerical calculation was done by data
for a chain system with mass particles on the
macro level and by analogy mass particles with
the same masses mk ¼ m ¼ 1½kg�, and all springs
have the same coefficient of rigidity
ck ¼ c ¼ 1 ½N=m� ¼ 1 kg= sec2

� �
; by using mathemat-

ical analogy and phenomenological mapping between
parameters and coordinates of the two chain systems
and corresponding analogous axial mass inertia
moments of 11 disks Jk ¼ J ¼ 1½kgm2� and coeffi-
cients of torsion rigidities of the parts’ shaft between
disks ck ¼ c ¼ 1 ½N=m� ¼ 1 kg= sec2

� �
, Figure 2(b) was

produced. Eigen characteristic numbers as well as
eigen circular frequencies for a mechanical chain tor-
sion system with 11 disks on the shaft have the same
corresponding characteristic numbers as a mechanical
chain system with 11 mass particles.

In Figure 3, 11 amplitude-frequency resonant curves
of a homogenous chain system at nano level with 11 d.f.
for 11 generalized coordinate forced vibrations of mass
particles displacements and perturbation positions, in
relation to equilibrium, under the action of one fre-
quency external excitation applied to the third mass
particle in the chain are presented in the function of
external excitation square frequency.

Using ideas and theory of mathematical phenomen-
ology and mathematical analogy, the same 11 ampli-
tudes – frequency resonant curves, that are presented in
Figure 3, can also, be used for systems with eleven
degree of freedom presented in Figure 1c (chain multi
pendulum system) and Figure 1d (chain electrical cir-
cuit system) under corresponding analogous kinetic
parameters of systems and analogous parameters of
external excitation loads, as well as corresponding ana-
logous boundary and initial conditions.

From the 11 amplitude-frequency curves presented
in Figure 3 it can be seen that in a chain system with 11
d.f., for forced dynamics excited by one frequency
external excitation applied to the third mass particle,
the appearance of 11 resonant regimes at values of
eigen circular frequencies is possible. In each of the
11 amplitude-frequency curves at some values of eigen
circular frequencies the curves possess vertical asymp-
totes. When amplitude - frequency curves take zero
values, then the amplitude of particular solutions are
equal to zero, and the corresponding circular frequen-
cies of the external excitation correspond to the dynam-
ical absorption regime, and the corresponding mass
particle is at forced peace or vibrates only with eigen
circular frequencies, depending on initial conditions,
but there are no vibrations with the external one

frequency excitation circular frequency, as a paradox,
when external excitation is applied to this mass particle.

From the 11 amplitude-frequency curves presented
in Figure 3 it can be seen that dynamical absorption
appears in the forced vibrations of:

. the first mass particle at eight circular frequencies of
external one frequency excitation;

. the second mass particle at nine circular frequencies
of external one frequency excitation;

. the third mass particle at six circular frequencies of
external one frequency excitation;

. the fourth mass particle at nine circular frequencies
of external one frequency excitation;

. the fifth mass particle at four circular frequencies
of external one frequency excitation;

. the sixth mass particle at three circular frequencies of
external one frequency excitation;

. the seventh mass particle at six circular frequencies
of external one frequency excitation;

. the eighth mass particle at five circular frequencies of
external one frequency excitation;

. the ninth mass particle at zero circular frequencies
of external one frequency excitation;

. the tenth mass particle at three circular frequencies
of external one frequency excitation;

. the eleventh mass particle at two circular frequencies
of external one frequency excitation.

The appearance of one or more regimes of dynamic
absorptions at the resonant frequencies is possible, so
it is conceivable that some mass particles in the chain
are in the regime of resonant oscillations, while other
mass particles are in the regime of dynamic absorption.
This is evident for example in Figure 3 where the ampli-
tude-frequency curves of each mass particle in the chain
are presented, while the amplitude-frequency curve pos-
sesses roots at the same point as the characteristic fre-
quency graph.

5. Non-homogeneous model of chain
system forced vibrations

Let us consider a non-homogeneous model of chain
system kinetic parameters. Corresponding matrix A of
inertia elements, for a system with 11 d.f., is a diagonal
quadratic of 11th order and generalized external exci-
tation forces Q3

� �
are in the following forms:

A ¼ m1 . . . m11

	 

I,

Q3ð Þ ¼ 0 0 F03 0 . . . 0
	 


cos�3t
ð32Þ

Where I is the unit diagonal matrix of 11th order.
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Without losing generality, we have adopted the
single-frequency external excitation attached to the
third mass particle in the chain.

Matrix C of the rigidity coefficients of the spring
elements for a chain system with 11 d.f. is a tridiagonal
matrix of 11th order with bandwidth three in the fol-
lowing form

The frequency equation expressed by previous
matrix A and C is in the form of the following
determinant

f !2
	 

¼ C� !2A


 

 ¼ 0 ð34Þ

or in developed form

The roots of the previous frequency equation – the
characteristic equation – are the eigen characteristic
numbers of the square of the eigen circular frequencies.
The system of ordinary differential equations of

mass particle forced dynamics is in the following
matrix form

A €xf g þ C xf g ¼ Q
� �
¼ F0f g cos�t ð36Þ

or in the form with proposed particular solutions

€x1 €x2 €x3 €x4 . . . €x11
	 


A0

þ x1 x2 x3 x4 . . . x11
	 


C0

¼ 0 0 F03 0 . . . 0
	 


cos�3t

Where

x1 x2 x3 x4 . . . x11
	 

¼ C1 C2 C3 C4 . . . C11

	 

cos�3t

C¼

c1þ c2 �c2
�c2 c2þ c3ð Þ �c3

�c3 c3þ c4ð Þ �c4
�c4 c4þ c5ð Þ �c5

�c5 c5þ c6ð Þ �c6
�c6 c6þ c7ð Þ �c7

�c7 c7þ c8ð Þ �c8
�c8 c8þ c9ð Þ �c9

�c9 c9þ c10ð Þ �c10

�c10

c10þ c11 �c11

�c11 c11þ c12

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA
ð33Þ

f !2
	 

¼

c1þc2ð Þ�!2m1 �c2

�c2 c2þc3ð Þ�!2m2 �c3

�c3 c3þc4ð Þ�!2m3 �c4

�c4 c4þc5ð Þ�!2m4 �c5

�c5 c5þc6ð Þ�!2m5 �c6

�c6 c6þc7ð Þ�!2m6 �c7

�c7 c7þc8ð Þ�!2m7 �c8

�c8 c8þc9ð Þ�!2m8 �c9

�c9 c9þc10ð Þ�!2m9 �c10

�c10
c10þc11ð Þ�!2m10

�c11

�c11 c11þc12ð Þ�!2m11


































































¼0

ð35Þ
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and it follows that

C1 C2 C3 C4 . . . C11

	 

C0 ��2

3A
0

	 

¼ 0 0 F03 0 . . . 0
	 
 ð37Þ

The determinant of the previous system is in the form

� �2
3

	 

¼ C��2

3A


 

 6¼ 0 ð38Þ

and must be different from zero. Then it must be
�2

3 6¼ !
2
s , s ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

If the determinant of the previous system is equal to
zero: f �2

3

	 

¼ � �2

3

	 

¼ C��2

3A


 

 ¼ 0 for �2

3 ¼ !
2
s ,

s ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, then the external excita-
tion circular frequency is the resonant frequency, as we
show for homogeneous chain forced dynamics. Now it
must be seen if this holds for a non-homogeneous
system.

The determinant of the chain system with 11 d.f. is in
the following developed form

and must to be different from zero, for �2
3 6¼ !

2
s ,

s ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.
To obtain amplitudes C 3ð Þk �2

3

	 

of particular solu-

tions, it is necessary to find 11 sub-determinants
�k �2

3

	 

. Corresponding sub-determinants �k �2

3

	 

,

k ¼ 1, 2, 3, 4, . . . , 11: it is possible to obtain by substi-
tuting into the determinate of system � �2

3

	 

expressed

in (39) the corresponding k-th column by column
�3kF03f g, containing non-zero element F03. Where F03

is the amplitude of external excitation force applied to
the third mass particle of the chain system. For the first
sub-determinant �1 �2

3

	 

, the following can be written

Amplitude C 3ð Þ1 �2
3

	 

of particular solution for the

first mass particle in the chain forced vibration displace-
ment under the external one frequency excitation
applied to the third mass particle in chain, is in the form

C 3ð Þ1 �2
3

	 

¼

�1 �2
3

	 

� �2

3

	 
 , for �2
3 6¼ !

2
s ,

s ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

ð41Þ

The particular solution for the first mass particle in
chains, when one frequency external excitation is
applied to the third mass particle in the chain, is in
the form:

x1 t,�2
3

	 

¼ C 3ð Þ1 �2

3

	 

cos�3t, for �2

3 6¼ !
2
s ,

s ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
ð42Þ

This amplitude (41) of the particular solution is the
function of the external excitation circular frequency
force. When, the amplitude-frequency graph, as a func-
tion of external excitation circular frequency, has the
value of one of the eigen circular frequency values, then
the graph has asymptotes and branches that tend to
infinity. When external excitation frequency takes the
values of eigen circular frequency of free oscillations,
amplitudes of particular solutions for forced vibrations
asymptotically tend to infinity and the vibration state
corresponds to a resonant state in which elongations

f �2
3

	 

¼� �2

3

	 

¼

c1þc2ð Þ��2
3m1 �c2

�c2 c2þc3ð Þ��2
3m2 �c3

�c3 c3þc4ð Þ��2
3m3 �c4

�c4 c4þc5ð Þ��2
3m4 �c5

�c5 c5þc6ð Þ��2
3m5 �c6

�c6 c6þc7ð Þ��2
3m6 �c7

�c7 c7þc8ð Þ��2
3m7 �c8

�c8 c8þc9ð Þ��2
3m8 �c9

�c93 c9þc10ð Þ��2
3m9 �c10

�c10
c10þc11ð Þ��2

3m10
�c11

�c11 c11þc12ð Þ��2
3m11


































































ð39Þ

�1 �2
3

	 

¼F03

�c2

c2þc3ð Þ��2
3m2 �c3

�c4 c4þc5ð Þ��2
3m4 �c5

�c5 c5þc6ð Þ��2
3m5 �c6

�c6 c6þc7ð Þ��2
3m6 �c7

�c7 c7þc8ð Þ��2
3m7 �c8

�c8 c8þc9ð Þ��2
3m8 �c9

�c9 c9þc10ð Þ��2
3m9 �c10

�c10 c10þc11��2
3m10 �c11

�c11 c11þc12��2
3m11























































ð40Þ
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increase and tend to infinity with increasing time dur-
ation of this resonant state.

Amplitude C 3ð Þk �2
3

	 

of the particular solution for

k-th mass particle in the chain forced vibration dis-
placement under the external one frequency excita-
tion applied to the third mass particle in chain, is in
the form

C 3ð Þk �2
3

	 

¼

� 3ð Þk �2
3

	 

� �2

3

	 
 , for �2
3 6¼ !

2
s ,

s ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

ð43Þ

The particular solution for k-th mass particle in chains,
when one frequency external excitation is applied to the
third mass particle in the chain, is in the form

xk t,�2
3

	 

¼ C 3ð Þk �2

3

	 

cos�3t ð44Þ

Corresponding determinants for obtaining amplitudes
of the particular solution for the third mass particle and
the ninth mass particle in the chain are in the following
form

The general solution of the system of ordinary dif-
ferential equations (37) describing forced vibrations of
a non-homogeneous chain under the external one fre-
quency excitation applied to the third mass particle in
the chain is in the form

xk t,�2
3

	 

¼
Xs¼N
s¼1

K
sð Þ
Nk !

2
s

	 

As cos!stþ Bs sin!sth i

þ
�k �2

3

	 

!2
M ��2

3

	 

� N�1ð Þ �2

3

	 
 cos�3t

for k ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and

for �2
3 6¼ !

2
s , s ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11:

ð47Þ

in which K
sð Þ
Nk !

2
s

	 

, s ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 are co-

factors of frequency determinant (32), or elements of
modal chain matrix

R ¼ K
sð Þ
Nk

� �# k¼1,2,3, ...,N

! s¼1,2,3, ...,N

�3 �2
3

	 

¼F03

c1þc2ð Þ��2
3m1 �c2

�c2 c2þc3ð Þ��2
3m2

c4þc5ð Þ��2
3m4 �c5

�c5 c5þc6ð Þ��2
3m5 �c6

�c6 c6þc7ð Þ��2
3m6 �c7

�c7 c7þc8ð Þ��2
3m7 �c8

�c8 c8þc9ð Þ��2
3m8 �c9

�c9 c9þc10ð Þ��2
3m9 �c10

�c10 c10þc11ð Þ��2
3m10 �c11

�c11 c11þc12��2
3m11






















































ð45Þ

�9 �2
3

	 

¼F03

c1þc2ð Þ��2
3m1 �c2

�c2 c2þc3ð Þ��2
3m2 �c3

�c4 c4þc5ð Þ��2
3m4 �c5

�c5 c5þc6ð Þ��2
3m5 �c6

�c6 c6þc7ð Þ���2
3m6 �c7

�c7 c7þc8ð Þ��2
3m7 �c8

�c8 c8þc9ð Þ��2
3m8

�c9 �c10

c10þc11��2
3m10 �c11

�c11 c11þc12��2
3m11






















































ð46Þ
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with a column containing eigen vectors,
� �2

3

	 

¼ !2

M ��2
3

	 

� N�1ð Þ �2

3

	 

and As and Bs,

s ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 are integral constants
defined by the initial conditions. By using the initial
conditions at initial moment t ¼ 0, mass particles
have perturbation in relation to equilibrium positions
xk 0ð Þ ¼ x0k and initial velocities: _xk 0ð Þ ¼ _x0k. Based on
the accepted initial conditions it is correct for integral
constants As and Bs, s ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 to
write the following expressions

As¼
1

Rj j

Xj¼N
j¼1

�1ð Þ jþs Rjs



 

 x0j�
�j �2

3

	 

!2
M��2

3

	 

� N�1ð Þ �2

3

	 

* +

Bs¼�
1

Rj j

Xj¼N
j¼1

�1ð Þ jþs Rjs



 

 _x0j
!s
þ

�3

!s

�j �2
3

	 

!2
M��2

3

	 

� N�1ð Þ �2

3

	 

* +

s¼1,2,3,4,5,6,7,8,9,10,11

ð48Þ

where Rjs



 

 are corresponding co-factors of modal
chain matrix

R ¼ K
sð Þ
Nk

� �# k¼1,2,3, ...,N

! s¼1,2,3, ...,N
:

The particular solution of the system of ordinary
differential equations (37) for forced vibrations and
known initial conditions, describing chain mass particle
forced non-resonant vibration displacements, is in the
following form

xk t,�2
3

	 

¼

1

Rj j

Xs¼N
s¼1

K
sð Þ
Nk !

2
s

	 
Xj¼N
j¼1

�1ð Þ jþs Rjs



 

"

� x0j cos!stþ
_x0j
!s

sin!st

� ��

�
1

!2
M ��2

3

	 

� N�1ð Þ �2

3

	 
 1

Rj j

�
Xs¼N
s¼1

K
sð Þ
Nk !

2
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Xj¼N
j¼1

�1ð Þ jþs

"

� Rjs



 

�j �2
3

	 

cos!stþ

�3

!s
sin!st

� ��

þ
�k �2

3

	 

!2
M ��2

3

	 

� N�1ð Þ �2

3

	 
 cos�3t

for k ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and

for �2
3 6¼ !

2
s , s ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11:

ð49Þ

The first series of terms in the previous expression
(49) is the particular solution for free vibrations and
known initial conditions in the following form

xk t,�2
3

	 

¼

1

Rj j

Xs¼N
s¼1

K
sð Þ
Nk !

2
s

	 
Xj¼N
j¼1

�1ð Þ jþs Rjs



 

"

� x0j cos!stþ
_x0j
!s

sin!st

� ��
for k ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ð50Þ

and contain only a set of eigen circular frequencies of
free chain vibrations, !s, s ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.
Free vibrations of each mass particle in a chain with 11
d.f. are in the multi (11) frequency vibration regime.

The particular solution (49) for mass particle forced
vibrations and known initial conditions contains, in the
first part, terms from expression (50) for free vibrations
and with 11 eigen circular frequencies, and in the
second part, terms, now denoted by xk 3,4ð Þ t,�

2
3

	 

,

depending on the set of eigen circular frequencies of
free vibrations and on external excitation circular fre-
quency �3 6¼ !s.

When external excitation circular frequency �3 is
equal to one of the eigen circular frequencies of free
vibrations �3 ¼ !M, from the set !s, �2

3 ¼ !
2
M ¼ !

2
s ,

M ¼ s ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 terms from solution
(49) denoted by xk 3,4ð Þ t,�

2
3

	 

take undefined value

xk 3,4ð Þ t,�
2
3

	 
� �
�3¼!M

¼ 0
0 and it is necessary to apply

L’Hôpital’s rule to find the limit of this expression
value xk 3,4ð Þ t,�

2
3

	 
� �
�3¼!M

¼ lim
�3!!M

xk 3,4ð Þ t,�
2
3

	 

(see

Hedrih (Stevanović), 2006b):

xk 3,4ð Þ t,�
2
3

	 

¼ lim

�3!!M

�
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(
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h

�
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3

	 

� N�1ð Þ �2

3

	 
 cos�3t

)

for k ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and

for �2
3 ¼ !

2
s , s ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

ð51Þ

After obtaining the limit of this expression value

xk 3,4ð Þ t,�
2
3

	 
� �
�3¼!M

¼ lim
�3!!M

xk 3,4ð Þ t,�
2
3

	 

for a resonant

case �3 ¼ !M of 11 possible cases �2
3 ¼ !

2
M ¼ !

2
s ,

M ¼ s ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, the particular

solution of the system of ordinary differential equations
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(37) for forced vibrations and known initial conditions,
describing chain mass particle forced resonant vibra-
tion displacements, is in the following form:

xk 3,4ð Þ t,�
2
3

	 

¼ �

1

�2!M� N�1ð Þ !2
M

	 


�
1

Rj j

� Xs¼N
s¼1

K
sð Þ
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2
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j¼1

�1ð Þjþs Rjs



 

d�j �2
3
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K
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Nk !

2
s

	 


�
Xj¼N
j¼1

�1ð Þjþs Rjs



 

�j !
2
M

	 
 1

!s
sin!st

� �

þ
d�k �2

3

	 

d�3






�3¼!M

cos!Mt�t�k !
2
M

	 

sin!Mt

�
for k ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and

for �2
3 ¼ !

2
s , s ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 ð52Þ

Figure 4. Time history graph of the resonance summand H !Mtð Þ in expressions of angular coordinate of disks in chain torsion

system (or of mass particle displacement in chain system) linear increasing with time
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Figure 5. Eleven amplitude-frequency resonant curves of a non-homogeneous chain system for data on the nano level (example of

molecules of a mouse zona pellucida) with 11 degrees of freedom for forced vibrations under the action of one frequency: external

excitation applied to the third mass particle in chain ors electric voltage applied to the third electric sub-circuit to the coil inductance

and capacitor or mechanical couple applied to the third pendulum in a multi-pendulum chain system. Circles in figures denote

frequency intervals with close asymptotes on resonant frequencies
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The previous expression (52) for mass particle displace-
ments in a chain (or in mathematical analogy an angu-
lar coordinate of disk rotation about a shaft axis in
mechanical torsion chain, Figure 1(c)) in a resonant
case when �3 ¼ !M of 11 possible cases
�2

3 ¼ !
2
M ¼ !

2
s , M ¼ s ¼ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

contain one term and in the form
H !Mtð Þ ¼ !Mtð Þ�k !

2
M

	 

=2!2

M� N�1ð Þ !2
M

	 
	 

sin!Mt lin-

early depending on time and increasing with time.
This is illustrated in Figure 4.

In Figure 5 eleven amplitude-frequency resonant
curves of a non-homogeneous chain system at nano
level with 11 d.f. for forced vibrations under the
action of one frequency: external excitation applied to
the third mass particle in chain or electric voltage
applied to the third electric sub-circuit to the coil induc-
tor and capacitator or mechanical couple applied to the
third pendulum in a multi-pendulum chain system are
presented.

From 11 amplitude-frequency curves, presented in
Figure 5, it can be seen that dynamical absorption
appears in the forced vibrations of:

. the first mass particle at five circular frequencies of
external one frequency excitation;

. the second mass particle at five circular frequencies
of external one frequency excitation;

. the third mass particle at three circular frequencies
of external one frequency excitation;

. the fourth mass particle at five circular frequencies of
external one frequency excitation;

. the fifth mass particle at three circular frequencies of
external one frequency excitation;

. the sixth mass particle at two circular frequencies of
external one frequency excitation;

. the seventh mass particle at four circular frequencies
of external one frequency excitation;

. the eighth mass particle at four circular frequencies
of external one frequency excitation;

. the ninth mass particle at zero circular frequencies of
external one frequency excitation;

. the tenth mass particle at one circular frequency of
external one frequency excitation;

. the eleventh mass particle at one circular frequency
of external one frequency excitation.

The appearance of one or more regimes of dynamic
absorptions at the resonant frequencies is possible, so it
is also possible that some of the mass particles in the
chain are in the regime of resonant oscillations, while
othermass particles are in the regime of dynamic absorp-
tion. This is evident for example in Figure 5, which pre-
sents amplitude-frequency curves of each mass particle
in the chain, while the amplitude-frequency curves

possess roots at the same point as the characteristic fre-
quency graph.

6. Conclusions

In conclusion, we believe that Petrović’s theory of
mathematical phenomenology elements, phenomeno-
logical mapping and mathematical analogy is a very
useful tool for the integration of knowledge obtained
in various areas of science on the basis of phenomeno-
logical mappings, analogous models of the dynamics of
systems of disparate natures (mechanical, electrical,
biomechanical, physico-chemical, socio-economical)
and a transfer of knowledge and obtained research
results from one area of science to another.

We can further consider transversal vibrations of an
11 deformable beam hybrid system on a discrete con-
tinuum layer with linear elastic and translator and rota-
tor inertia properties described by 11 coupled partial
differential equations along the beam’s transversal dis-
placements wk x, tð Þ, k ¼ 1, 2, 3, . . . , 11 (see Rašković,
1952; Hedrih (Stevanović), 2006a, 2008a). The next
two examples for consideration are the transversal
vibrations of an 11 deformable plate hybrid system as
well as the transversal vibrations of an 11 deformable
membrane hybrid system, on a discrete continuum
layer with ideal linear elastic and translator and rotator
inertia properties. Comparing these three listed systems
of partial differential equations, each describing trans-
versal vibrations of a hybrid system consisting each of
11 deformable bodies of the same type (beams, or plates
or membranes) coupled by discrete continuum layers
with translator and rotator inertia properties, which
vibrate on foundations with an ideal elastic layer with
translator and rotator inertia properties, a similar form
and a mathematical analogy can be identified. Also, for
solving these coupled partial differential equations, a
similar series can be used along eigen amplitude func-
tions and eigen 11 frequency time functions, Tk nð ÞðtÞ for
an 11 beam system and Tk nmð ÞðtÞ, k ¼ 1, 2, 3, . . . , 11,
n,m ¼ 1, 2, 3, 4 . . .1 for an 11 plate system, as well as
for 11 membrane systems. Then phenomenological
mapping and mathematical analogy between eigen
time functions corresponding to eigen amplitude func-
tions is obvious. In the case of distributed external one
frequency excitation applied along the third body
(along the beam, the plate surface or the membrane
surface), in eigen amplitude mode, it is possible to
transform a problem’s solution into a solution system
of 11 ordinary differential equations along unknown
eigen time functions Tk nmð ÞðtÞ, k ¼ 1, 2, 3, . . . , 11,
n,m ¼ 1, 2, 3, 4 . . .1, for each of eigen amplitude func-
tions. These ordinary differential equations are of the
same type as the corresponding homogenous chain
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system with 11 d.f.. Eigen time functions Tk nmð ÞðtÞ,
k ¼ 1, 2, 3, . . . , 11, n,m ¼ 1, 2, 3, 4 . . .1 for each of
eigen amplitude functions are in analogy with homoge-
neous chain mass particle displacements.

Using phenomenological mapping, data obtained
for free and forced vibrations can be used for qualita-
tive explanation of characteristic time functions of
transversal vibration of multi-deformable body hybrid
systems.

It is then possible to discuss a set of eigen circular
frequencies of free transversal vibrations, as well as the
appearance of resonance regimes and dynamical
absorbtion regimes of time function corresponding to
a deformable body (beam, plate or membrane) in multi
body system forced vibrations in corresponding eigen
amplitude form.

Briefly, the novelty of this work is in studying chain
dynamics in systems with multiple d.f. (11) using phe-
nomenological mapping.

The application of this method covers eigen and
forced chain dynamics in systems with 11 d.f.: chains,
beams, plates, twisted chains, pendulums, electrical
chains. For all these systems we determined a set of
eigen circular frequencies, demonstrating the phenom-
enon of dynamical absorption and resonance.
Phenomenological mapping enables us to make a trans-
fer of conclusions from the analysis of dynamical prop-
erties and phenomena in one chain system to dynamical
properties in another chain system with the same d.f..

The results of this study are applicable to biological
chain oscillators, such as a DNA double helix, (Hedrih
(Stevanović) and Hedrih, 2010; Hedrih, 2011, 2012).
Also, we can point out that discrete continuum
method (Hedrih (Stevanović), 2002, 2006b, 2008b,
2009) is based on coupled chains as a model abstraction
of real continuum in the results of discretizations of
structures. The results presented here can be applied
to models obtained by a discrete continuum method
to solve defined tasks of the dynamics of systems of
different kinds.
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Hedrih (Stevanović) K and Hedrih A (2010) Eigen modes of

the double DNA chain helix vibrations. Journal of

Theoretical and Applied Mechanics 1(48): 219–231.
Hedrih A (2011) Modeling oscillations of Zona Pellucida

before and after fertilization. ENOC Young Scientist

Prize Paper. EUROMECH Newsletter 40: 6–14.
Hedrih A (2012) Frequency analysis of knot mass particles in

oscillatory spherical net model of mouse zona pellucida.

Lecture Session, Short Paper. In: Abstract book of 23rd

International Congress of Theoretical and Applied

Mechanics, (IUTAM ICTAM Beijing 2012), Beijing,

China, 19–24 August, SM01-049, pp. 209. Beijing:

UITAM and The Chinese Society of Theoretical and

Applied Mechanics.
Kelebanov RI and Maldacena MJ (2009) Solving quantum

field theories via curved spacetimes. Physics Today 68:

28–33.
Najar F, Nayfeh AH, Abdel-Rahman EM, et al. (2010)

Nonlinear analysis of MEMS electrostatic microactuators:

18 Journal of Vibration and Control

 at KoBSON on August 17, 2015jvc.sagepub.comDownloaded from 

http://jvc.sagepub.com/


XML Template (2014) [15.3.2014–3:24pm] [1–19]
//blrnas3/cenpro/ApplicationFiles/Journals/SAGE/3B2/JVCJ/Vol00000/140040/APPFile/SG-JVCJ140040.3d (JVC) [PREPRINTER stage]

primary and secondary resonances of the first mode.
Journal of Vibration and Control 16(9): 1321–1349.

Penrose R (1989) The Emperor’s New Mind: Concerning

Computers, Minds and The Laws of Physics. Oxford:
Oxford University Press.

Pettifor DG (1986) The structures of binary compounds. I.
Phenomenological structure maps. Journal of Physics. C:

Solid State Physics 19: 285.
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