

ISSN 0972-2963

Volume 15

Number 1

January 2015

Animal Nutrition and Feed Technology

E
C
T
A
N
U
L
A

Official Publication of
the Animal Nutrition Association

Animal Nutrition and Feed Technology

Official Publication of the Animal Nutrition Association, India

EDITORIAL BOARD

EDITOR-IN-CHIEF

Dr Ashok K Pattanaik, ICAR-Indian Veterinary Research Institute, Izatnagar, INDIA

EDITORS

Dr Narayan Dutta, ICAR-Indian Veterinary Research Institute, Izatnagar, INDIA

Dr Sunil E Jadhav, ICAR-Indian Veterinary Research Institute, Izatnagar, INDIA

EDITORIAL ADVISORY BOARD

CHIEF EDITORIAL ADVISOR

Dr Kusumakar Sharma, Greater Noida, INDIA

EDITORIAL ADVISORS

Dr C Devendra, Kuala Lumpur, MALAYSIA

Dr M Blümmel, Patancheru, INDIA

Dr CS Prasad, Bangalore, INDIA

Dr M Wanapat, Khon Kaen, THAILAND

Dr DN Kamra, Izatnagar, INDIA

Dr PN Kaul, Izatnagar, INDIA

Dr DVR Prakash Rao, Chennai, INDIA

Dr TG Nagaraja, Kansas, USA

Dr ER Ørskov, Dundee, UK

Dr U Krishnamoorthy, Trinidad, WEST INDIES

Dr GS Howarth, Adelaide, AUSTRALIA

Dr V Ravindran, Palmerston North, NEW ZEALAND

EDITORIAL BOARD

Dr A Kannan, Palampur, INDIA

Dr OA Olafadehan, Abuja, NIGERIA

Dr A Sahoo, Avikanagar, INDIA

Dr PA Iji, Armidale, AUSTRALIA

Dr AK Panda, Hyderabad, INDIA

Dr P Celi, Sydney, AUSTRALIA

Dr Asit Das, Izatnagar, INDIA

Dr R Bhatta, Bengaluru, INDIA

Dr AZM Salem, Toluca, MEXICO

Dr S Anandan, Ibadan, NIGERIA

Dr D Sapcota, Guwahati, INDIA

Dr SK Gowda, Bengaluru, INDIA

Dr HAM Ali, Khartoum, SUDAN

Dr SK Mahanta, Jhansi, INDIA

Dr J Lohakare, Corvallis, USA

Dr SS Giri, Bhubaneswar, INDIA

Dr J Syama Dayal, Chennai, INDIA

Dr SS Paul, Hisar, INDIA

Dr KG Umesh, Hyderabad, INDIA

Dr ST Beyene, Alice, SOUTH AFRICA

Dr LM Musalia, Egerton, KENYA

Dr SV Rama Rao, Hyderabad, INDIA

Dr MK Tripathi, Makhdoom, INDIA

Dr TC Loh, Selangor, MALAYSIA

BUSINESS CORRESPONDENCE: All business correspondence including subscription, order for advertising space should be addressed to the General Secretary, Animal Nutrition Association, Indian Veterinary Research Institute, Izatnagar -243 122, India.

EDITORIAL CORRESPONDENCE: All editorial queries regarding aims ad scope, submission of manuscripts and items for ANA News section, and Guide for Authors should be addressed to the Editor-in-Chief, Animal Nutrition & Feed Technology, Indian Veterinary Research Institute, Izatnagar -243 122, India; Telefax: +91-581-2301318; E-mail: anft.journal@gmail.com.

For further details about the association and the journal, please visit:
www.indiana.org / www.anft.org

Animal Nutrition and Feed Technology

Volume 15

Number 1

January 2015

CONTENTS

Research Papers

1. N.A. AL-BEITAWI AND S.S. EL-GHOUSEIN Effect of Essential Oil Mixture of Selected Medicinal Plants on Growth Performance, Antibody Titer and Hematological Profile in Male Broiler Chicken Fed Antibiotics-free Rations	1
2. D. KIROVSKI, M. ADAMOVIC, M. RADIVOJEVIC, H. SAMANC, I. VUJANAC, R. PRODANOVIC AND Z. SLADOJEVIC Effects of Bentonite on Weight Gain, Feed Consumption, Blood Metabolites and Ruminal Protozoa in Dairy Calves	11
3. S.A. BOLU, T.O. BABALOLA, N. ELELU, R.N. AHMED, S.A. OYETUNDE, P.F. ADEMOLA AND S.A. JIDDAH Effects of Aloe Vera Leaf Extract on Growth, Clinical Chemistry and Histology of Selected Organs in Turkey Poult Challenged with <i>Escherichia coli</i>	21
4. A.N. DEY AND N.P. TODARIA Variations in Proximate and Mineral Composition in the Leaves of Twelve Provenances of Gamari (<i>Gmelina arborea</i> Linn Roxb.)	31
5. B.K. OJHA, NARAYAN DUTTA, A.K. PATTANAIK, S.K. SINGH AND A. NARANG Effect of Pre-partum Strategic Supplementation of Concentrates on Colostrum Quality and Performance of Buffalo Calves	41
6. S. HAUNSHI, A.K. PANDA, M.K. PADHI AND S.K. BHANJA Effects of Varying Nutrient Densities on Production Performance of Aseel Layers	51
7. AVISHEK BISWAS, DIVYA, A.B. MANDAL AND RAM SINGH Effect of Dietary Supplementation of Chromium Picolinate on Productive Performance, Egg Quality and Carcass Traits in Laying Turkeys	59
8. GULAB CHANDRA, ANJALI AGGARWAL, ANIL KUMAR SINGH AND MUNEENDRA KUMAR Effect of Vitamin E and Zinc Supplementation on Milk Yield, Milk Composition, and Udder Health in Sahiwal Cows	67
9. J.S. LAMBA, M. WADHWA AND M.P.S. BAKSHI Enteric Methane Production Potential of Non-Leguminous Forages	79

Continued overleaf

10.	A.K. PATHAK, NARAYAN DUTTA, A.K. PATTANAIK, A. SINGH, A. NARANG AND K. SHARMA Effect of Condensed Tannins Supplementation from Tanniferous Tree Leaves on Methane Production and Efficiency of Microbial Biomass Production <i>In vitro</i>	91
11.	P. MANIKYA RAO, A. RAVI AND J. SURESH Milk Urea Nitrogen of Healthy and Repeat Breeder Buffaloes Reared under Two Different Feeding Systems	101
12.	S. VAITHIYANATHAN, S. SARAVANAKUMAR, P. BASWA REDDY AND C. RAMAKRISHNA Seasonal Variation in Fibre Degrading Enzymes Activities in the Rumen Contents of Slaughtered Sheep, Goat and Buffalo	111
13.	R. LOGANATHAN, P. SHAMSUDEEN, K. MANI, S.C. EDWIN AND K. RAJENDRAN Utilization of Ghee Residue in the Diet of Broiler Chicken	121
14.	MANOBHAVAN M., MANPAL SRIDHAR, SREEJA AJITH, DIVYA SHET, D.T. PAL, N.K.S. GOWDA AND A.V. ELANGOVAN Efficacy of Fungal Phytase on Growth Performance and Bone Mineralization in Broiler Chicken	129

Short Communications

15.	A.A. KHAN AND D. KONWAR Effect of Ascorbic Acid Supplementation on Physiological and Blood Biochemical Parameters in Goats during Summer	137
16.	A.M. GANAI, T. SHARMA AND R.K. DHURIA Effect of Yeast (<i>Saccharomyces cerevisiae</i>) Supplementation on Ruminal Digestion of Bajra (<i>Pennisetum glaucum</i>) Straw and Bajra Straw-based Complete Feed <i>In Vitro</i>	145
17.	S. ANANDHARAJ, T.M. PRABHU, M.P. SHASHIDHARA, K. CHANDRAPAL SINGH, R.G. GLORI DOSS, Y.B. RAJESHWARI AND B.N. SURESH Effect of Long Term Feeding of Salt Treated Castor Bean Meal Based Concentrate Mixture on the Performance of Lambs	155
18.	MAMTA SHARMA, RAM SINGH AND A.B. MANDAL Effect of Methionine Supplementation in Ameliorating Aflatoxicosis in Broiler Chickens	161
19.	M. SYAM PRASAD AND P. VASAN Effect of Different Physical Forms of Feed on the Performance of Commercial Broilers	171

Effects of Bentonite on Weight Gain, Feed Consumption, Blood Metabolites and Ruminal Protozoa in Dairy Calves

**D. Kirovski*, M. Adamovic¹, M. Radivojevic², H. Samanc³, I. Vujanac³,
R. Prodanovic³ and Z. Sladojevic⁴**

Department of Physiology and Biochemistry, Faculty of Veterinary Medicine
University of Belgrade, Bulevar Oslobođenja 18, 11 000 Belgrade, Serbia

(Received April 18, 2014)

ABSTRACT

Kirovski, D., Adamovic, M., Radivojevic, M., Samanc, H., Vujanac, I., Prodanovic, R. and Sladojevic, Z. 2015. The effects of bentonite on weight gain, feed consumption, blood metabolites and ruminal protozoa in dairy calves. Animal Nutrition and Feed Technology, 15: 11-20.

In order to ascertain the effects of addition of bentonite as a pelleting medium in the feed mixture for calves, fourteen 30d-old calves were randomly distributed into two equal groups (CON and EXP). From 30 to 120d of age the EXP group was fed a feed mixture containing 1.5% of natural bentonite while the CON group was fed the same pellets without added bentonite. Body weight was determined before and at the end of the trial. Feed intake was measured daily. Health status was monitored daily. Blood and rumen content samples were taken at 50 and 90d of experiment and analyzed for select parameters. The addition of bentonite had no effect ($P>0.05$) on average daily gain, feed intake and health. Blood pH, total number and motility of ruminal protozoa in the EXP group were significantly ($P<0.001$, $P<0.05$ and $P<0.05$; respectively) higher than in CON group at both the periods. At 120d of age the EXP calves had a significantly ($P<0.05$, $P<0.05$ and $P<0.01$; respectively) higher serum total protein, albumin and triglyceride concentrations and lower iron and IGF-I ($P<0.05$ and $P<0.01$, respectively) concentrations than respective controls values. It is concluded that the use of pelleted feed containing bentonite tended to improve growth of calves as well as the activity of protozoa in the rumen. Additionally, the results indicate a positive influence of the function of hepatocytes concomitant to a reduction in serum iron and IGF-I concentrations.

Key words: Bentonite, Blood metabolites, Calves, Ruminal protozoa, Weight gain.

*Corresponding author: dani@vet.bg.ac.rs

¹Institute for Technology of Nuclear and Other Raw Materials, Bulevar Frans d'Eparea 86, 11 000 Belgrade, Serbia

²Patent Co.-Business Unit Belgrade, Branka Krsmanovica 24, 11 000 Belgrade, Serbia

³Department of Farm Animals Diseases, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11 000 Belgrade, Serbia

⁴Veterinary Station, Veterina System Sladojevic, Gradiska, Bosna and Herzegovina, Republic of Srpska

INTRODUCTION

The nutrition of calves is of primary importance for achieving the genetic potential, health, welfare and reproductive performance of cattle. Therefore, technological procedures that improve nutrition utilization in calfhood are gaining importance. One such procedure is pelleting of feed mixtures. Due to the effect of temperature during pelleting partial decomposition of carbohydrates occurs, resulting in increased digestibility, improved taste and increased metabolizable energy (Samarasinghe *et al.*, 2000). Also, under the influence of temperature, degradation of certain thermolabile anti-nutritive feed components (trypsin inhibitor, lectins, urease, peroxidase, lipoxygenase, myrosinase, glucosinolates, gossypol etc.) occurs, resulting in additional positive effects for achieving better production and health performance in animals (Raczyński and Buraczewska, 1985). In addition, pelleted food improves the appetite, chewing and salivation and thus contributes to stabilizing the pH of the rumen. One of the effects of high temperature during pelleting is improved feed hygiene due to the reduction in the number of microorganisms present (Chukwuka *et al.*, 2010).

To improve the quality of pellets, especially their hardness, additives such as molasses, calcium lignosulfonate, sodium or calcium bentonite, raw fiber concentrate pulp, and other substances of organic and inorganic origins are used (Salari *et al.*, 2006; Pasha *et al.*, 2008).

Bentonite is a hydrated aluminum silicate of volcanic origin which contains the mineral montmorillonite (50-90%). It has thermoplastic characteristics which enable it to achieve good results during pelleting feedstuffs. It consists of exchangeable cations Na^+ , K^+ , Ca^{++} , and Mg^{++} . Bentonite has a high liquid binding (water and oil) capacity. Its cation exchange capacity (CEC) is 80-120 meq/100g. Due to its amphoteric features (releases and binds hydrogen ions) at the same time it is used as a means of maintaining the rumen pH. Bentonite binds aflatoxins (B_1 , B_2 , G_1 and G_2) present in the feed (Pasha *et al.*, 2007). Its ability to absorb zeralenone and ochratoxin is limited. Bentonite absorbs ammonia present in the rumen whenever its concentration is high and thereon it releases the absorbed when its concentration decreases (Britton *et al.*, 1978). This allows a more efficient use of ammonia nitrogen for microbial protein synthesis (Jacque *et al.*, 1986). In this way, it reduces the absorption of ammonia, liver load and energy consumption for urea synthesis. Due to its ability to bind water, bentonite increases its volume and thus the volume of the digested material in the digestive tract. The increased volume of the digesta has an effect on the reduction of the speed of passage through the digestive tract, thus enabling a prolonged action of digestive enzymes and subsequent increase of the digestibility of the nutrients (Pasha *et al.*, 2008). Studies on bentonite and its impact on the productive capacity of cattle were performed mainly in adult cows (Van den Hoek, 1980; Diaz *et al.*, 2004), while the number of publications relating to calves is limited.

The aim of this paper was to study the effects of pelleting medium based on natural bentonite (Bentopel®) on weight gain, feed consumption, blood metabolites and rumen protozoan activity in dairy calves.

MATERIALS AND METHODS

Bentonite composition

The pelleting mixture based on natural bentonite (Bentopel®) was manufactured with a special technological procedure at the Institute for the Technology of Nuclear and Other Raw Materials, Belgrade. The natural bentonite originated from the site Sipovo (Bosnia and Hercegovina). The chemical composition of Bentopel® is shown in Table 2 and granulometric values are given in Table 3.

Calves and dietary treatments

The study was conducted on 14 Holstein calves. At the age of 30d the calves were divided into two equal groups of seven calves in each: the control (CON) and the experimental (EXP) groups. The CON group was fed a mixture of standard food pellets, while the EXP group received a pelleted mixture which included 1.5% pelleting medium based on natural bentonite (Table 1). The pellet diameter was 4 mm and the length measured 4-6 mm. In addition to the feed mixtures, both groups of calves were further fed milk replacer twice a day (the total daily consumption was 6L and up to the age of 70d, and then 3L up to the age of 80d). The substitute for milk powder was dissolved in water and diluted in a ratio of 1:8, at 38-42°C. Additionally all calves involved in the experiment received alfalfa hay *ad libitum*.

BW gain, health status and feed intake

The BW of individual calves was measured at the start of the trial (at 30d of age) and at the end (at 120d of age). According to the differences in BW the daily weight gain was calculated. Health status of calves involved in experiment was monitored daily, especially the possible occurrence of diarrhoea. Feed intake was measured daily throughout the 90d duration of the trial.

Table 1. Chemical composition of Bentopel®

Compound/Element	Content
SiO ₂ (%)	48.37
Al ₂ O ₃ (%)	22.39
Fe ₂ O ₃ (%)	4.73
CaO (%)	5.86
MgO (%)	0.81
Na ₂ O %	0.07
K ₂ O (%)	0.40
TiO ₂ (%)	0.34
Cd (ppm)	<5
Pb (ppm)	<30
Sb (ppm)	<30
Cu (ppm)	<30
Zn (ppm)	<40
As (ppm)	<20

Table 2. Granulometric composition of Bentopel®

Granulation size class (μm)	%
- 63 + 61	12.60
- 61 + 46	2.70
- 46 + 32	3.50
- 32 + 21	2.70
- 21 + 15	3.50
- 15 + 0	75.00

Rumen sample collection and analysis

Samples of rumen content were taken with the aid of a specifically designed probe from all the calves twice, at the age of 80 and 120d (Zwick and Klee, 1997). Rumen contents were taken 4 to 6h after feeding of the morning meal. Immediately after the samples were taken, the pH was recorded using a pH meter (WTW 330i), and a native slide was prepared for microscopic examination of the rumen protozoa and their motility. Their motility was numerically estimated (0- immobile, 1- poor motility, 2- optimal motility). Samples were mixed with an equal volume of 2% formalin in phosphate-buffered saline for microscopic counts. Protozoa were counted in whole rumen contents by light microscopy as per Dehority (1984). Counts of total protozoa were recorded; 20 fields of view were counted, and the highest and lowest counts were discarded.

Table 3. Physical and chemical composition of feed pellet

Attributes	Dietary group	
	CON	EXP
<i>Physical composition (%)</i>		
Corn, wholemeal	34.30	34.30
Barley, wholemeal	10.00	10.00
Soybean meal, full fat	22.50	22.50
Sunflower meal, 33% CP	10.50	10.50
Wheat flour	16.50	15.00
Alfalfa meal	3.00	3.00
Calcium carbonate	1.20	1.20
Dicalcium phosphate	0.40	0.40
Salt	0.60	0.60
Vitamin and mineral supplement	1.00	1.00
Bentopel®	0.00	1.50
<i>Chemical composition (% as feed)</i>		
Protein	18.51	18.33
Fat	5.42	5.36
Crude fiber	6.48	6.39
ADF	7.35	7.29
NDF	15.11	14.95
Ash	3.96	5.13
Calcium	0.72	0.74
Phosphorous	0.60	0.58
NE _L , MJ/kg	6.86	6.78

Blood sample collection and analytical methods

Blood samples were taken from calves at 50 and 90d of experimental feeding by jugular venipuncture 30 min before rumen content sampling to eliminate the effects of stress on the results. Blood samples were taken into test tubes with no added anticoagulant; samples taken for glucose determination were collected with the anticoagulant Na-fluoride. After 15 min at room temperature, all samples were centrifuged at 1,000 x g for 20 min and the blood serum and blood plasma separated and stored at -18°C until analyses. Blood samples were tested by photometry for Ca and P concentration, total protein, albumin, triglycerides, urea, iron, and glucose with commercial test kits (BioMedica, Serbia). The concentrations of insulin like growth factor-I (IGF-I) and insulin were determined by RIA method using commercial kits (INEP, Zemun). The homeostasis model assessment of insulin resistance (HOMA-IR; an indicator of the susceptibility to insulin resistance) was calculated based upon the values measured for blood glucose and insulin concentrations according to the formula: HOMA-IR = glucose (mmol/L) x insulin (mIU/L) / 22.5.

Statistical analysis

The results obtained were analyzed statistically using Statistica v. 6. (StatSoft, Inc., Tulsa, OK, USA). Experimental data are presented as means \pm SE. For testing and determination of statistically significant differences two tests were applied. The first test was the repeatet-measure ANOVA with 3 variables (calf, treatment and time). When "F" for treatment, time, or interaction showed statistical significance ($P < 0.05$), the second (t) test, for evaluation of differences between mean values ($n=7$), was applied. Differences were considered statistically significant as $P < 0.05$, $P < 0.01$ and $P < 0.001$.

RESULTS AND DISCUSSION

Body weight gain

At the start of the trial the mean BW did not differ significantly between the experimental and control group (Table 4). At the end of the experiment the EXP group had on average 9.55 kg higher BW compared to CON calves. When calculated in terms of average daily gain (ADG) the EXP calves attained 112g more body weight than the CON calves. However, these differences were not significant; thus, it can be concluded that bentonite had no effect on growth of dairy calves.

Feed intake

The results have shown that on an average, the EXP calves consumed 4.42% more feed and had a 6.45% higher efficiency compared to the CON calves (Table 4). Similar effects on weight gain of Bentonite-based mixtures have been described in lambs by Khadem *et al.* (2007) and piglets by Thieu *et al.* (2008). There is no literature available related to feed intake in calves fed bentonite added diets. Possible explanation of increased weight gain and feed intake in calves fed Bentonite-based diets could be increased ruminal pH, total number and motility of protozoa in those animals (Diaz *et al.*, 2004), as have been observed in present study (Table 5). There was no occurrence of diarrhoea.

Table 4. The effect of bentonite treatment on body weight changes and feed intake of dairy calves

Parameters	Dietary group	
	CON	EXP
Initial BW, kg	54.55 \pm 1.56	54.05 \pm 1.16
Final BW, kg	142.06 \pm 3.69	151.61 \pm 5.29
Net BW gain, kg	87.51 \pm 3.88	97.56 \pm 4.81
Average daily gain, kg	0.972 \pm 0.04	1.084 \pm 0.05
Mixture intake*, kg/d	1.81 \pm 0.01	1.89 \pm 0.02
Mixture utilization*, kg/kg BW gain	1.86 \pm 0.08	1.74 \pm 0.09

*Significant difference between groups at $P < 0.05$

Table 5. The effect of bentonite treatment on select blood and rumen parameters of dairy calves

Attributes	Period	Dietary groups	
		CON	EXP
<i>Blood parameters</i>			
pH	50d	7.40±0.01***	7.45±0.0 ^a
	90d	7.39±0.01***	7.49±0.01
Calcium (mmol/L)	50d	2.20±0.04	2.12±0.03
	90d	2.20±0.04	2.24±0.03
Phosphorus (mmol/L)	50d	2.98±0.13	2.71±0.12
	90d	3.05±0.08	2.83±0.12
Total protein (g/L)	50d	61.40±2.12	63.60±2.11
	90d	75.04±0.94*	79.56±1.77
Albumin (g/L)	50d	23.36±0.92 ^{aaa}	21.58±0.74 ^{aa}
	90d	58.40±1.54*	63.84±1.11
Urea (mmol/L)	50d	3.60±0.13 ^{aaa}	3.26±0.19 ^{aaa}
	90d	5.51±0.34	6.15±0.18
Total bilirubin (mmol/L)	50d	11.04±1.33 ^{aaa}	11.08±1.27
	90d	4.46±0.38	5.36±0.28
Triglycerides (mmol/L)	50d	0.45±0.03 ^{aaa}	0.53±0.27 ^{aaa}
	90d	0.13±0.04**	0.31±0.02
Cholesterol (mmol/L)	50d	2.40±0.07 ^{aaa}	2.60±0.06 ^{aa}
	90d	1.37±0.06	1.56±0.08
Fe (μmol/L)	50d	38.36±4.38 ^{aaa}	33.48±1.89
	90d	38.01±0.39*	29.84±3.45
IGF-I (nmol/L)	50d	18.16±1.49 ^{aaa}	19.66±1.88 ^{aaa}
	90d	32.01±2.69**	22.32±1.15
Insulin (mIU/L)	50d	22.16±2.70	25.83±2.78
	90d	32.58±3.59	37.66±3.74
Glucose (mmol/L)	50d	4.74±0.18 ^a	4.50±0.06
	90d	4.42±0.13	4.36±0.12
HOMA [†]	50d	4.62±0.52 ^a	5.19±0.61 ^a
	90d	6.51±0.84	7.35±0.80
<i>Rumen parameters</i>			
pH	50d	6.28±0.09	6.44±0.08 ^a
	90d	6.14±0.04	6.25±0.11
Total protozoa (x 10 ⁵)	50d	3.28±0.61* ^a	5.00±0.44 ^a
	90d	3.86±0.63**	6.43±0.43
Protozoa motility	50d	1.00±0.22*	1.71±0.18
	90d	1.14±0.26*	1.86±0.14

^{*}Significant difference between groups at P<0.05; ^{**}P<0.01; ^{***}P<0.001^aSignificant difference within group at P<0.05; ^{aa}P<0.01; ^{aaa}P<0.001[†]Homeostasis model assessment of insulin resistance

Blood parameters

Analysis of blood biochemical parameters in both groups of calves at the age of 80 days, which corresponded to the 50th day of the experiment, did not differ significantly ($P>0.05$) with the exception of the pH which was significantly ($P<0.001$) higher in the EXP group (Table 5). The difference in blood pH between the two groups at the age of 80 and 120 days can be accounted by the differences in ruminal pH. When analyzing the parameters whose concentrations differed between the groups it could be assumed that the added pelleting agent possibly had a positive effect on the activity of hepatocytes. Namely, the concentration of albumin, which is primarily synthesized by the liver and total protein were significantly ($P<0.05$) higher in the EXP group of calves. In addition, significantly ($P<0.01$) higher triglyceride concentrations in the EXP group may confirm the assumption of an improved synthetic activity of hepatocytes in experimental calves. The numerically higher bilirubin concentration (although not significantly) in the EXP calves may indicate the increased activity of liver tissue in the experimental groups. These results are consistent with the available data in the literature (Dunn *et al.*, 1979; Mckenzie, 1991). Given the fact that preparations of bentonite absorbed toxic substances within the small intestine, it is possible that this relieves the liver, thus reducing its detoxifying activity and in compensation leaves space for an increased synthetic activity.

The concentration of iron was significantly ($P<0.05$) lower in the EXP group compared to the control group at 90d post-feeding. This finding can be considered as the result of supplementation with bentonite and it has been previously reported as a consequence of the use of mineral supplements in calf feeding. Literature indicates that low iron concentration in calves occurs concurrently with low IGF-I concentration (Blum and Hammon, 1999; Prodanovic *et al.*, 2014), the observed significantly ($P<0.01$) lower concentration of IGF-I in the blood serum of the EXP calves is a confirmation of the above reports. Moreover, higher serum triglycerides concentrations in EXP group of calves likely to have contributed to the reduction of blood IGF-I concentration. An increase in serum triglycerides concentrations inhibits GRF-mediated GH secretion in calves, as demonstrated by Coxam *et al.* (1989). If the HOMA indices between the two groups are compared the fall in IGF-I concentration can be partially explained by the established relationship between insulin and glucose in the EXP group of calves. Although HOMA-IR is widely used in human medicine to determine the susceptibility to insulin resistance, it may give certain information in other species as well. Thus, if the HOMA-IR value is high then the predisposition to insulin resistance is increased and vice versa (Borai *et al.*, 2011). Although the concentration of insulin and glucose between the CON and EXP groups of calves did not differ ($P>0.05$), the calculated HOMA index indicates that in the EXP group there was a tendency toward insulin resistance. From the available literature it is known that the tendency toward insulin resistance leads to lower IGF-I. Also, it is possible that the significantly higher triglycerides concentration at 90d post-feeding can partially

explain the tendency of these animals towards insulin resistance, as documented in children (Tresaco *et al.*, 2003).

Rumen parameters

Data presented in Table 5 showed that the pH value was higher, though not significantly, in the EXP group at 50 and 90d. However, it should be emphasized that throughout the experiment the rumen content pH value was within the physiological range (6.2-6.8). At the end of the trial ruminal pH in the CON group decreased below the optimal physiological value. This indicates that the tested pelleting mixture had a positive impact on ruminal pH and maintained the pH continuously within the physiological values. In such conditions, the electrochemical reaction of ruminal contents and blood do not change significantly compared to physiological values. It is the buffering activity of bentonite at different pH values, and its basic chemical properties that make it interesting for application in the feed industry and animal nutrition. While studying the influence of bentonite on fermentation in the rumen it was observed that bentonite slows fermentation in the rumen especially in terms of diet and concentrated feeds thus preventing a pronounced fall in rumen pH (Aitchison *et al.*, 1986). The data on the presence of protozoa in rumen have shown significant ($P<0.05$ and $P<0.01$; respectively) differences between the EXP and CON groups at both the tested periods. In the CON group there were a significantly ($P<0.05$ and $P<0.01$; respectively) reduced number of total protozoa which had lower ($P<0.05$) motility (Table 5). The beneficial impact of bentonite on protozoa activity has been reported earlier as well (Abudullah *et al.*, 1995). However, increased ruminal pH, higher total number and increased motility of protozoa in EXP calves consuming the feed mixture containing 1.5% of natural bentonite, had no adverse impact on animal health since all calves during experimental period did not show any visible sign of disease.

CONCLUSIONS

The use of pelleted feed containing bentonite tended to improve growth of calves and also the activity of protozoa in the rumen. Additionally, the results indicate a positive influence of the function of hepatocytes concomitant to a reduction in serum iron and IGF-I concentrations.

ACKNOWLEDGMENTS

This work was supported by Ministry of Education, Science and Technological Development, Republic of Serbia, Project Grant No. 31003 and 46002.

REFERENCES

Abdullah, N., Hanita, H., Ho Y.W., Kudo, H., Jalaludin, S. and Ivan, M. 1995. The effects of bentonite on rumen protozoa population and rumen fluid characteristics of sheep fed palm kernel cake. *Asian-Australasian Journal of Animal Science*, 8: 249-254.

Aitchison, E.M., Rowe, J.B. and Rix, G.S. 1986. Effect of bentonite clays on rumen fermentation and diet digestibility. *Proceeding of Nutrition Society of Australia*, 11: 111-114.

Borai, A., Livingstone, C., Kaddam, I. and Ferns, G. 2011. Selection of appropriate method for the assessment of insulin resistance. *BMC Medical Research Methodology*, 11: 158-167.

Blum, J.W. and Hammon, H. 1999. Endocrine and metabolic aspects in milk-fed calves. *Domestic Animal Endocrinology*, 17: 219-230.

Britton, R.A., Colling, D.P. and Klopfenstein, T.J. 1978. Effect of complexing sodium bentonite with soybean meal or urea *in vitro* ruminal ammonia release and nitrogen utilization ruminants. *Journal of Animal Science*, 48: 1738-1747.

Chukwuka, O.K., Okoli, I.C., Opara, M.N., Omede, A.A., Ogbeuewu, I.P. and Iheshiulor, O.O.M. 2010. The growing problems of mycotoxins in animal feed industry in west Africa. *Asian Journal of Poultry Science*, 4: 122-134.

Coxam, V., Davicco, M.J. and Barlet J.P. 1989. Effects of triglycerides on growth hormone (GH) releasing factor mediated GH secretion in newborn calves. *Domestic Animal Endocrinology*, 6: 389-393.

Dehority, B.A. 1984. Evaluation of subsampling and fixation procedures used for counting rumen protozoa. *Applied and Environmental Microbiology*, 48: 182-185.

Diaz, D.E., Hagler, W.M.Jr., Blackwelder, J.T., Eve J.A., Hopkings, B.A., Anderson, K.L., Jones, F.T. and Whitlow L.W. 2004. Aflatoxin binders II: reduction of aflatoxin M1 in milk by sequestering agents of cows consuming aflatoxin in feed. *Mycopathologia*, 157: 233-241.

Dunn, B.H., Emerick, R.J. and Embry, I.B. 1979. Sodium bentonite and sodium bicarbonate in high-concentrate diets for lambs and steers. *Journal of Animal Science*, 48: 764-769.

Jacque, K.A., Axe, D.E., Harris, T.R., Harmon, D.L., Bolen, K.K. and Johnson, D.E. 1986. Effect of sodium bicarbonate and sodium bentonite on digestion, solid and liquid flow, and ruminal fermentation characteristics of forage sorghum silage-based diets fed to steers. *Journal of Animal Science*, 63: 923-932.

Khadem, A.A., Soofizadeh, M. and Afzalzadeh, A. 2007. Productivity, blood metabolites and carcass characteristics of fattening Zandi lambs fed sodium bentonite supplemented total mixed rations. *Pakistan Journal of Biological Science*, 10: 3613-3619.

Mckenzie, R.A. 1991. Bentonite as therapy for *Lantana camara* poisoning. *Australian Veterinary Journal*, 68: 146-148.

Pasha, T.N., Farooq, M.U., Khattak, F.M., Jabbar, M.A. and Khan, A.D. 2007. Effectiveness of sodium bentonite and two commercial products as aflatoxin absorbent in diets for broiler chickens. *Animal Feed Science and Technology*, 132: 103-110.

Pasha, T.N., Mahmood, A., Khattak, F.M., Jabbar, M.A. and Khan, A.D. 2008. The effect of feed supplemented with different sodium bentonite treatments on broiler performance. *Turkish Journal of Veterinary and Animal Science*, 32: 245-248.

Prodanovic, R., Kirovski, D., Vujanac, I., Dodovski, P., Jovanovic, L.J. and Samanc, H. 2014. Relationship between serum iron and insulin-like growth factor-I concentrations in 10-day-old calves. *Acta Veterinaria Brno*, 83: 133-137.

Raczyński, G. and Buraczewska, L. 1985. The effect of pelleting feed supplemented with lysine on its utilization by young pigs. *Archiv für Tierernaehrung*, 35: 233-241.

Salari, S., Kermanshahi, H. and Nnasiri Moghaddam, H. 2006. Effect of sodium bentonite and comparasion of pellet vs mash on performance of broiler chickens. *International Journal of Poultry Science*, 5: 31-34.

Samarasinghe, K., Messikommer, R. and Wenk, C. 2000. Activity of supplemental enzymes and their effect on nutrient utilization and growth performance of growing chickens as affecting by pelleting temperature. *Archive für Tierernaehrung*, 53: 45-48.

Thieu, N.Q., Ogle, B. and Pettersson, H. 2008. Efficacy of bentonite clay in ameliorating aflatoxicosis in piglets fed aflatoxin contaminated diets. *Tropical Animal Health and Production*, 40: 649-656.

Tresaco, B., Bueno, G., Moreno, L.A., Garagorri, J.M. and Bueno, M. 2003. Insulin resistance and impaired glucose tolerance in obese children and adolescents. *Journal of Physiology and Biochemistry*, 59: 217-23.

Zwick, T. and Klee, W. 1997. Das Pansensaftentnahmegerät nach Hamburger. *Tierärztliche Umschau*, 52: 80-84.