Ukoliko želite, kartone naučnog osoblja ovog fakulteta možete da pogledate i na sajtu Elektronskog fakulteta.
NAPOMENA
Za tačnost unetih podataka o publikacijama, naučnim i umetničkim referencama odgovorni su autori.Ivan Damnjanović
Dodatne informacije
-
Lični podaci
- Datum rođenja: 15. 3. 1996.
- Mesto rođenja: Niš, Srbija
-
Obrazovanje
- Fakultet: Elektronski fakultet, Univerzitet u Nišu
- Odsek / Grupa / Smer: Računarstvo i informatika
- Godina diplomiranja: 2019.
-
Spisak publikacija
-
Radovi u časopisima sa IMPACT faktorom:
23. S. Xu, K. Xu and I. Damnjanović, Maximum number of spanning trees and connectivity: Graphs with a fixed minimum degree and bipartite graphs, Discuss. Math. Graph Theory, https://doi.org/10.7151/dmgt.2614.
22. N. Bašić, I. Damnjanović and P. W. Fowler, On the degrees of regular nut graphs and Cayley nut graphs, Ars. Math. Contemp., https://doi.org/10.26493/1855-3974.3641.49c.
21. I. Damnjanović, A. Xu and K. Xu, On the transmission irregular trees with the maximum Wiener index, J. Comb. Optim. 51(1) (2026), Art. No. 12, https://doi.org/10.1007/s10878-025-01383-3.
20. N. Bašić and I. Damnjanović, Nut graphs with a prescribed number of vertex and edge orbits, J. Algebraic Combin. 63(1) (2026), Art. No. 9, https://doi.org/10.1007/s10801-025-01492-6.
19. I. Damnjanović, Vertex-transitive nut graph order–degree existence problem, Discrete Math. Theor. Comput. Sci. 28(2) (2026), #6, https://doi.org/10.46298/dmtcs.15989.
18. I. Stošić and I. Damnjanović, An efficient algorithm for generating transmission irregular trees, Comput. Appl. Math. 45(2) (2026), Art. No. 80, https://doi.org/10.1007/s40314-025-03474-7.
17. H. Stanković, M. Krstić and I. Damnjanović, Some properties of the q-numerical radius, Linear Multilinear Algebra 73(8) (2025), 1736–1757, https://doi.org/10.1080/03081087.2024.2438927.
16. I. Damnjanović, On the maximum spectral radius of connected graphs with a prescribed order and size, Filomat 39(34) (2025), 12281–12297, https://www.pmf.ni.ac.rs/filomat-content/2025/39-34/39-34-21-28093.pdf.
15. I. Stošić, I. Damnjanović and Ž. Ranđelović, Counting the number of inequivalent arithmetic expressions on n variables, Filomat 39(3) (2025), 949–962, https://doi.org/10.2298/FIL2503949S.
14. P. Csikvári, I. Damnjanović, M. Milošević, I. Stanković and D. Stevanović, Classification of borderenergetic chemical graphs and borderenergetic graphs of order 12, Discrete Appl. Math. 376 (2025), 394–403, https://doi.org/10.1016/j.dam.2025.07.035.
13. N. Bašić and I. Damnjanović, On cubic polycirculant nut graphs, Comput. Appl. Math. 44(5) (2025), Art. No. 265, https://doi.org/10.1007/s40314-025-03218-7.
12. Y. Alizadeh, N. Bašić, I. Damnjanović, T. Došlić, T. Pisanski, D. Stevanović and K. Xu, Solving the Mostar index inverse problem, J. Math. Chem. 62(5) (2024), 1079–1093, https://doi.org/10.1007/s10910-024-01581-0.
11. I. Damnjanović and Ž. Ranđelović, An inverse result for Wang's theorem on extremal trees, Filomat 38(3) (2024), 1085–1099, https://doi.org/10.2298/FIL2403085D.
10. I. Damnjanović, N. Bašić, T. Pisanski and A. Žitnik, Classification of cubic tricirculant nut graphs, Electron. J. Combin. 31(2) (2024), #P2.31, https://doi.org/10.37236/12668.
9. I. Damnjanović, Characterization of transmission irregular starlike and double starlike trees, Comput. Appl. Math. 43(4) (2024), Art. No. 262, https://doi.org/10.1007/s40314-024-02777-5.
8. I. Damnjanović, Complete resolution of the circulant nut graph order–degree existence problem, Ars Math. Contemp. 24(4) (2024), #P4.03, https://doi.org/10.26493/1855-3974.3009.6df.
7. I. Damnjanović, D. Stevanović and S. Al-Yakoob, On transmission-irregular graphs and long pendent paths, Appl. Math. Comput. 482 (2024), 128918, https://doi.org/10.1016/j.amc.2024.128918.
6. I. Damnjanović and D. Stevanović, An alternative proof of the Sombor index minimizing property of greedy trees, Publ. Inst. Math. (Beograd) 113 (127) (2023), 57–65, https://doi.org/10.2298/PIM2327057D.
5. I. Damnjanović, M. Milošević and D. Stevanović, A note on extremal Sombor indices of trees with a given degree sequence, MATCH Commun. Math. Comput. Chem. 90(1) (2023), 197–202, https://doi.org/10.46793/match.90-1.197D.
4. I. Damnjanović, S. Filipovski and D. Stevanović, Spectral properties of balanced trees and dendrimers, Linear Algebra Appl. 657 (2023), 163–196, https://doi.org/10.1016/j.laa.2022.10.020.
3. I. Damnjanović, Two families of circulant nut graphs, Filomat 37(24) (2023), 8331–8360, https://doi.org/10.2298/FIL2324331D.
2. I. Damnjanović and D. Stevanović, On circulant nut graphs, Linear Algebra Appl. 633 (2022), 127–151, https://doi.org/10.1016/j.laa.2021.10.006.
1. J. Džunić and I. Damnjanović, General approach to constructing optimal multipoint families of iterative methods using Hermite’s rational interpolation, J. Comput. Appl. Math. 321 (2017), 261–269, https://doi.org/10.1016/j.cam.2017.02.039.
-
Radovi u ostalim časopisima:
3. I. Damnjanović, A note on Cayley nut graphs whose degree is divisible by four, Art Discrete Appl. Math., https://doi.org/10.26493/2590-9770.1662.4e9.
2. I. Damnjanović, On the null spaces of quartic circulant graphs, Discrete Math. Chem. 1(1) (2025), #P1.04, https://doi.org/10.26493/2820-6657.6.5a1.
1. I. Damnjanović, Computing the characteristic polynomials of rooted trees and the energies of Bethe trees, Appl. Math. Comput. Sci. 7(1) (2023), 1–16, http://operator.pmf.ni.ac.rs/amcs/volumes/2023/amcs-2023-7-1-1.pdf.
