Ukoliko želite, kartone naučnog osoblja ovog fakulteta možete da pogledate i na sajtu Prirodno - matematičkog fakulteta
NAPOMENA
Za tačnost unetih podataka o publikacijama, naučnim i umetničkim referencama odgovorni su autori.Jelena Milošević
Dodatne informacije
-
Lični podaci
- Datum rođenja: 8.1.1979.
- Mesto rođenja: Niš
-
Obrazovanje
- Fakultet: Prirodno matematički fakultet,Univerzitet u Nišu
- Odsek / Grupa / Smer: Matematika-smer Teorijska matematika
- Godina diplomiranja: 2001
-
Spisak publikacija
-
Radovi u časopisima sa IMPACT faktorom:
1. Jelena Manojlovic, Jelena Milosevic, Sharp Oscillation Criteria for Fouth Order Sub-half-liner and Super-half-linear Differential Equations, Electronic Journal of Qualitative Theory of Differential Equations, 32 (2008), 1-13.
2. Kusano Takasi, Jelena V. Manojlovic, Jelena Milosevic, Intermediate solutions of second order quasilinear ordinary differential equation in the framework of regular variation, Applied Mathematics and Computation, 219 (2013), 8178-8191, Elsevier.
3. K.Takasi, J.Manojlović, J.Milošević, Intermediate solutions of fourth order quasilinear differential equations in the framework of regular variation, Applied Mathematics and Computation , 248 (2014) 246-272.
4. J. Milošević, J.V. Manojlović, Positive decreasing solutions of second order quasilinearordinary differential equations in the framework of regular variation, Filomat, 29:9 (2015), 1995-2010
5. J. Milošević, J.V. Manojlović, Asymptotic analysis of fourth order quasilinear differential equations in the framework of regular variation, Taiwanese Journal of Mathematics, Vol. 19, No. 5, pp. 1415-1456
6. J. Milošević, Asymptotic behavior of increasing positive solutions of second order quasilinear ordinary differential equations in the framework of regular variation, Advances in Difference Equations (2015) 2015:273.
-
Radovi na naučnim skupovima međunarodnog značaja:
1. J.Manojlović, J.Milošević, Intermediate solutions of fourth order quasilinear differential equations in the framework of regular variation, 13th Serbian Mathematical Congress, Vrnjačka Banja, maj 22-25, 2014.
2. J.Manojlović, J.Milošević , Intermediate solutions of fourth order quasilinear differential equations in the framework of regular variation, MA2016, Ohrid, 2016.
3. J.Milošević, Asymptotic behavior of positive solutions of second order quasilinear ordinary differential equations in the framework of regular variation, SMSCG2019-Susret matematičara Srbije i Crne Gore, Budva, Crna Gora, 2019.
4. J.Milošević, Asymptotic equivalence relations for rapidly varying solutions of sublinear differential equations of Emden-Fowler type, IWNAA2021, October 13-16, 2021.