Ukoliko želite, kartone naučnog osoblja ovog fakulteta možete da pogledate i na sajtu Prirodno - matematičkog fakulteta
NAPOMENA
Za tačnost unetih podataka o publikacijama, naučnim i umetničkim referencama odgovorni su autori.Svetlana Janković
Dodatne informacije
-
Lični podaci
- Datum rođenja: 18.11.1949.
- Mesto rođenja: Pirot
-
Obrazovanje
- Fakultet: Univerzitet u Beogradu, Prirodno-matematički fakultet
- Godina diplomiranja: 1972.
-
Spisak publikacija
-
Monografije i poglavlja u monografijama:
S. Janković, M. Jovanović, Analytic Approximations of Solutions to Stochastic Differential Equations, Faculty of Science and Mathematics, University of Niš, 2008.
-
Knjige i udžbenici:
1.S. Janković, Diferencijalne jednačine, Prirodno-matematički fakultet u Nišu, Niš, 2002,2004.
2. J. Kneževic-Milanović, S. Janković, J. Manojlović, V. Jovanović, Parcijalne diferencijalne jednačine - Teorija I zadaci, Univerzitet u Beogradu, Beograd, 2000.
3.S. Janković, P. Protić, K. Stevanović-Hedrih, Parcijalne diferencijalne I integralne jednačine sa primenama u inženjerstvu, Univerzitet u Nišu, Niš, 1999.
4.S. Janković, J. Knežević-Miljanović, Diferencijalne jednačine I - Primeri sa elementima teorije, Vesta Company &Matematički fakultet u Beogradu, Beograd, 1999, 2000, 2004,2007.
5.S. Janković, J. Knežević-Miljanović, Diferencijalne jednačine I I - Primeri sa elementima teorije, Matematički fakultet u Beogradu, Beograd, 1999, 2000, 2004, 2007.
-
Radovi u časopisima sa IMPACT faktorom:
1. S. Janković, M. Jovanović: On perturbed stochastic hereditary differential equations with integral contractors, Computers & Mathematics with Applications, 42, (2001), 871-881.
2. S. Janković, M. Jovanović: Perturbed stochastic hereditary differential equations, Stochastic Analysis and Applications, 20 (3), (2002), 567-589.
3. M. Jovanović, S. Janković: On perturbed nonlinear Ito type stochastic integrodifferential equations, Journal of Mathematical Analysis and Applications, 269, (2002), 301-316.
4. S. Janković, M. Jovanović: Generalized stochastic perturbations - depending differential equations, Stochastic Analysis and Applications, 20 (6), (2002), 1281-1307.
5. S. Janković, D. Ilić, An analytic approximation of solutions of stochastic differential equation, Computers & Mathematics with Applications, 47 (6-7), (2004), 903-912.
6. M. Jovanović, S. Janković: Functionally perturbed stochastic differential equations, Mathematische Nachrichten, 279(16) (2006), 1808-1822.
7. S. Janković, D. Ilić: An analytic approximate method for solving stochastic integrodifferential equations, Journal of Mathematical Analysis and Applications, 320(2006), 230-245.
8. J. Ranđelović, S. Janković: On the p-th moment exponential stability criteria of neutral stohastic functional differential equations, Journal of Mathematical Analysis and Applications, 326 (2007), 266-280.
9. S. Janković, J. Ranđelović, M. Jovanović: Razumikin-type exponential stability criteria of neutral stochastic functional differential equations, Journal of Mathematical Analysis and Applications, 355 (2) (2009), 811-820.
10. M. Jovanović, S. Janković: Neutral stochastic functional differential equations with additive perturbations, Applied Mathematics and Computations , 213 (2) (2009), 370-379.
11. S. Janković, D. Ilić: One linear analytic approximation for stochastic integrodifferential equations, Acta Mathematica Scientia, Acta Mathematica Scientia, 30 (4) (2010), 1073–1085.
12. M. Milošević, M. Jovanović, S. Janković : An approximate method via Taylor series for stochastic functional differential equations, Journal of Mathematical Analysis and Applications, 363 (2010), 128-137.
13. S. Janković, G. Pavlović : Moment decay rates of stochastic differential equations with time-varying delay, Filomat 24 (1) (2010), 115-132.
14. M. Jovanović, S. Janković: On stochastic integrodifferential equations via non-linear integral contractors II, Filomat, 24 (2) (2010), 81-92.
15. S. Janković, M. Vasilova, M. Krstić: Some analytic approximations for neutral stochastic functional differential equations, Applied Mathematics and Computation, 217 (8) (2011), 3615–3623.
16. S. Janković, J. Djordjević, M. Jovanović: On a class of backward doubly stochastic differential equations, Applied Mathematics and Computation, 217 (2011), 8754-8764; Correction: 218 (17) (2012), 9033–9034.
17. G. Pavlović, S. Janković: Moment exponential stability and integrability of stochastic functional differential equations, Applied Mathematics and Computation, 218 (10) (2012), 6125-6134.
18. B. Tojtovska, S. Janković: On a general decay stability of stochastic Cohen–Grossberg neutral networks with time-varying delays, Applied Mathematics and Computation, 219 (4) (2012), 2289–2302; Correction: 219 (10) (2013), 4963–4963.
19. G. Pavlović, S. Janković: Razumikhin-type theorems on general decay stability of stochastic functional differential equations with infinite delay, Journal of Computational and Applied Mathematics, 236 (7) (2012), 1679-1690.
20. S. Janković, M. Jovanović, J. Djordjević : Perturbed backward stochastic differential equations, Mathematical and Computer Modelling, 55 (2012), 1734-1745.
21. G. Pavlović, S. Janković: The Razumikhin approach on general decay stability for neutral stochastic functional differential equations,, Journal of the Franklin Institute, 350 (2013), 2124–2145.
22. J. Djordjević, S. Janković: On a class of backward stochastic Volterra integral equations, Applied Mathematics Letters, 26 (2013), 1192-1197.
-
Radovi u ostalim časopisima:
1. S. Janković: Discrete channels with memorie and anticipation, Matematicki vesnik, 2 (15)(30) (1978), 149-154 (in Serbian).
2. S. Janković: An application of the information theory to translate languages, Zbornik radova Filozofskog fakulteta u Nisu, V (1978), 331-343 (in Serbian)
3. S. Janković: One approximation of the solution of stochastic differential equation, Differential Equations and Applications, Proceedings of Third Conference, Rousse, Bulgaria, 1986, 727-730 (RZ 4B 156-1987)
4. S. Janković: Some limit theorems for stochastic differential equations of Ito's type, Zbornik radova Filozofskog fakulteta u Nisu, Serija matematika, (10), (1986), 203-209 (Zbl. 613-60056, RZ 8B 73-1987, MR 88e: 60076)
5. S. Janković: One general iterative method treating stochastic integrodifferential equations, Zbornik radova Filozofskog fakulteta u Nisu, Serija matemetika, 1(11), (1987), 31-39 (Zbl. 632-60058, RZ 6B 123-1988, MR 90a: 60119).
6. S. Janković: Iterative procedure for solving stochastic differential equations, Mathematica Balkanica, (N.S), V. 1, Fasc. 1, (1987), 64-71 (Zbl. 626-60054, RZ 10B 111-1988, MR 89b: 60139).
7. S. Janković: Almost surely limit theorems for stochastic differential equations, Matematicki vesnik, 39(1987), 57-64 (Zbl. 627-60055, RZ 3B 75-1988, MR 89d: 60102).
8. S. Janković: Some limit theorems for one type of stochastic integrodifferential equations, Publications de l'Institute Mathematique, Belgrade, Nouvelle serie, 41 (55) (1987), 137-141 (Zbl. 632-60059, RZ 2B 83-1988, MR 89e: 60120)
9. S. Janković: Some special iterative procedure for solving stochastic differential equations of Ito type, Mathematica Balkanica, (N.S), V.3, (1989), Fasc. 1, 44-50 (Zbl. 674-60059, MR 91b: 60046).
10. S. Janković, K. (Stevanovic) Hedrih: Some estimations of the nonlinear oscillator amplitude subjected to random parametric excitation, Teorijska i primenjena mehanika, Beograd, V. 17, (1991), 89-96 (RZ 6A 140-1994)
11. S. Janković: On stochastic differential-difference equations and their random integral contractors, Matematika, Acta Universitatis Latviensis, V. 562 (1991), 74-84 (MR 93j: 60077)
12. S. Janković: A limit problem for stochastic differential equations with the coefficients having random integral contractors, Zbornik radova Filozofskog fakulteta u Nisu, Serija matematika, 6:2 (1992), 323-330 (MR 94h: 60082)
13. S. Janković: A general method for a mean square estimation of nonlinear oscillator amplitude subjected to random excitations, Facta Universitatis, Series Mechanics, Automatic Control and Robotics, V. 1, No. 3, (1993), 293-304 (MR 96j: 34102).
14. S. Janković: Elements of the theory of stohastic processes and stochastic differential equations, JUMEH Nis'95, XXI Yugoslav Congress of the Theoretical and Applied Mechanics, Facultu of Mechanical Engineering, University of Nis, (1995), 255-266, invited paper, (in Serbian).
15. S. Janković, M. Jovanović: On a general iterative method for solvihg hereditary differential equations (I), Filomat, 10 (1996), 149-158.
16. S. Janković, M. Jovanović: On a general iterative method for solvihg hereditary differential equations (II), Filomat, 11 (1997), 7-18.
17. M. Jovanović, S. Janković: On a class of nonlinear stochastic hereditary integrodifferential equations, Indian Journal of Pure and Applied Mathematics, 28(8), (1997), 1061-1082.
18. S. Janković: Introduction to the theory of the Ito-type stochastic integrals and stochastic differential equations, Topics from Mathematics and Mechanics, Mat. institut SANU, 8(16), (1998), 105-139
19. S. Janković, M. Jovanović: A general algorithm for solving stochastic hereditary integrodifferential equations, FactaUniversitatic, Series Mathematics, 13 (1998), 109-126.
20. S. Janković, M. Jovanović, Convergence in (2m)-th mean for perturbed stochastic integrodifferential equations,Publications de l'Institute Mathematique, 68 (82), (2000), 133-145.
21. S. Janković, M. Jovanović, Asymptotic behavior of non-linear dynamic systems subjected to parametric and random exitations, Facta Universitatis, Ser. Mechanics, Automatic Control and Robotics, 2 (10), (2000), 1137-1148
22. S. Janković, M. Jovanović, (2m)-th mean behavior of solutions of stochastic differential equations under parametric perturbations, Novi Sad Journal of Mathematics, Novi Sad, 30 (1), (2000), 133-142
23. S. Jankovic, Can we determine a probability for a random choice of an even number from the set of natural numbers?, Teaching of Mathematics, Mathematical Society of Serbia, XLV, 1-2 (2000), 9-16 (in Serbian).
24. S. Jankovic, Linear difference equations, Teaching of Mathematics, Mathematical Society of Serbia, XLV, 3-4 (2000), 13-22 (in Serbian).
25. M. Jovanović, S. Janković: Existence and uniqueness problems for nonlinear stochastic hereditary integrodifferential equations, Indian Journal of Pure and Applied Mathematics, 32 (5), (2001), 695-710
26. S. Janković, M. Jovanović: On perturbed stochastic hereditary differential equations with integral contractors, Computers & Mathematics with Applications, 42, (2001), 871-881.
27. D. Ilić, S. Janković: Lp-approximation of solutions of stochastic integrodifferential equations, Publikacije Elektrotehnickog fakulteta, Beograd, 12, (2001), 52-60.
28. S. Jankovic, Mathematical models in biology and economics, Teaching of Mathematics, Mathematical Society of Serbia, XLVXXX, 1-2 (2003), 23-30 (in Serbian)
29. S. Janković, M. Jovanović: Some analytic iterative methods for solving various classes of stochastic hereditary integrodifferential equations, Facta Universitatis, Ser. Mechanics, Automatic Control and Robotics, 4 (16), (2004), 11-31.
30. S. Janković, M. Jovanović: L2m-asymtotic behavior of solutions of perturbet stochastic integrodifferential equations, Mathematica Balkanica New Series,Vol. 18, fasc. 3-4, (2004), 321-333.
31. S. Janković, M. Jovanović: The p-th moment exponential stability of neutral stohastic functional differential equations, Filomat, 20(1) (2006), 59-72.
32. S. Janković, M. Obradović: Pth mean asymptotic stability and integrability of Ito–Volterra integrodifferential equations, Filomat, 23 (3) (2009), 181–197. 3
33. M. Jovanović, S. Janković: On stochastic integrodifferential equations via non-linear integral contractors I, Filomat, 23 (3) (2009) 167-180.
34. M. Jovanović, S. Janković: Existence and uniqueness problems for nonlinear stochastic hereditary integrodifferential equations, Indian Journal of Pure and Applied Mathematics, 32 (5), (2001), 695-710
-
Radovi na domaćim naučnim skupovima:
1 .S. Janković: The quality estimation by hypothesis testing, Statistical Methods in Total Quality Management, Niš, (1995), 45-54 (in Serbian).
2. S. Janković, M. Jovanović, Stochastic differential equations depending of small parameters, SYM-OP-IS 2000, XXVII Yugoslav Symposium on Operational Reshearch, Belgrade, (2000), 425-428.
3. S. Janković, Lj. Petrović: The Black--Scholes model of option pricing, SYM-OP-IS 2001, XXVIII Yugoslav Symposium on Operational Reshearch, Belgrade, (2001), 571-574 (in Serbian)
4. Lj. Petrović, S. Janković: The Black--Scholes model for European options, forwards and future contracts, SYM-OP-IS 2001, XXVIII Yugoslav Symposium on Operational Reshearch, Belgrade, (2001), 593-596 (in Serbian).
5. J. Đorđević, M. Jovanović, S. Janković, One-factor interest rates stochastic models - Vasicek model, SYM-OP-IS 2006, Banja Kovoljača, Zbornik radova, (2006) 429-432.