Naučne publikacije akademskog osoblja

Ukoliko želite, kartone naučnog osoblja ovog fakulteta možete da pogledate i na sajtu Prirodno - matematičkog fakulteta

NAPOMENA

Za tačnost unetih podataka o publikacijama, naučnim i umetničkim referencama odgovorni su autori.
Datum kreiranja: 31.01.2014.

Marija Milošević

Dodatne informacije

  • Lični podaci

  • Datum rođenja: 27.10.1982.
  • Mesto rođenja: Niš
  • Obrazovanje

  • Fakultet: Univerzitet u Nišu, Prirodno-matematički fakultet
  • Odsek / Grupa / Smer: Odsek za matematiku i informatiku/Matematika/Matematika ekonomije
  • Godina diplomiranja: 2006.
  • Spisak publikacija

  • Knjige i udžbenici:

    M. Jovanović, M. Milošević, Finansijska matematika, udžbenik sa zadacima, Prirodno-matematički fakultet, Niš, 2015.


    M. Milošević, Aktuarska matematika, Prirodno-matematički fakultet, Niš, 2021.

  • Radovi u časopisima sa IMPACT faktorom:

    M. Milošević, M. Jovanović, S. Janković, An approximate method via Taylor series for stochastic functional differential equations, Journal of Mathematical Analysis and Applications 363 (2010) 128-137.


    M. Milošević, M. Jovanović, A Taylor polynomial approach in approximations of solution to pantograph stochastic differential equations with Markovian switching, Mathematical and Computer Modelling 53 (2011) 280-293.


    M. Milošević, M. Jovanović, An application of Taylor series in the approximation of solutions to stochastic differential equations with time-dependent delay, Journal of Computational and Applied Mathematics 235 (2011) 4439-4451.


    M. Milošević, Highly nonlinear neutral stochastic differential equations with time-dependent delay and the Euler-Maruyama method, Mathematical and Computer Modelling 54 (2011) 2235-2251.


    M. Milošević, On the approximations of solutions to stochastic differential delay equations with Poisson random measure via Taylor series, Filomat 27:1 (2013) 201-214.


    M. Milošević, Almost sure exponential stability of solutions to highly nonlinear neutral stochastic differential equations with time-dependent delay and the Euler-Maruyama approximation, Mathematical and Computer Modelling 57 (2013) 887-899.


    Marija Milošević, Existence, uniqueness, almost sure polynomial stability of solution to a class of highly nonlinear pantograph stochastic differential equations and the Euler-Maruyama approximation, Applied Mathematics and Computation 237 (2014) 672-685.


    Marija Milošević, Implicit numerical methods for highly nonlinear neutral stochastic differential equations with time-dependent delay, Applied Mathematics and Computation 244 (2014) 741-760.


    Marija Milošević, Convergence and almost sure exponential stability of implicit numerical methods for a class of highly nonlinear neutral stochastic differential equations with constant delay, Journal of Computational and Applied Mathematics 280 (2015) 248-264.


    M. Milošević, The Euler–Maruyama approximation of solutions to stochastic differential equations with piecewise constant arguments, J. Comput. Appl. Math. 298 (2016) 1–12.


    M. Milošević, An explicit analytic approximation of solutions for a class of neutral stochastic differential equations with time-dependent delay based on Taylor expansion, Appl. Math. Comput. 274 (2016) 745–761.


    M. Obradović, M. Milošević, Stability of a class of neutral stochastic differential equations with unbounded delay and Markovian switching and the Euler–Maruyama method, J. Comput. Appl. Math. 309 (2017) 244-266.


    M. Obradović, M. Milošević,  Almost sure exponential stability of the $\theta$-Euler Maruyama method for neutral stochastic differential equations with time dependent delay when $\theta\in[0,\frac{1  {2}]$}, Filomat 31:18 (2017) 5629–5645.


    M. Milošević, Convergence and almost sure polynomial stability of the backward and forward-backward Euler methods for highly nonlinear pantograph stochastic differential equations, Mathematics and Computers in Simulation 150 (2018) 25-48. 


    M. Obradović, M. Milošević, Almost sure exponential stability of the -Euler-Maruyama method, when  for neutral stochastic differential equations with time-dependent delay under nonlinear growth conditions, Calcolo (2019) 56(2):9. 


    M. Milošević, Divergence of the backward Euler method for ordinary stochastic differential equations, Numerical Algorithms 82(4) (2019) 1395-1407. 

  • Radovi na naučnim skupovima međunarodnog značaja:

    Marija Milošević, Svetlana Janković, An approximation via Taylor series of solutions to functional stochastic differential equations, XIII International Summer Conference on Probability and Statistics, Sozopol, Bugarska, 2008.


    Marija Milošević, Svetlana Janković, Analytic approximations of solutions for stochastic differential delay equations via Taylor series, XII Serbian Mathematical Congress, Novi Sad, Srbija, 2008.


    Marija Milošević, Miljana Jovanović, An approximate method for stochastic differential equations with time-dependent delay, MICOM, Ohrid, Makedonija, 2009.


    Marija Milošević, Miljana Jovanović, On the approximation of solutions to hybrid pantograph stochastic differential equations, First Mathematical Conference, Pale, Bosna i Hercegovina, 2011.


    Marija Milošević, Numerical solution of highly nonlinear neutral stochastic differential equations with time-dependent delay, Spring school in probability, Dubrovnik, Hrvatska, 2012.


    Marija Milošević, Pantograph stochastic differential equations under nonlinear growth conditions and the Euler-Maruyama approximation, 13th Serbian Mathematical Congress, Vrnja\v cka banja, Srbija, 2014.


    Marija Milošević, Analysis of the backward Euler method for a class of neutral stochastic differential equations with time-dependent delay, Junior female researchers in probability, Berlin, Nemačka, 2015.


    Marija Milošević,  An explicit approximation of solutions for a class of neutral stochastic differential equations with time-dependent delay, 7th European Congress of Mathematics, Berlin, 2016.


    Marija Milošević, Miljana Jovanović, Svetlana Janković, An application of Taylor expansion in the approximation of solutions to various types of stochastic differential equations, Mini- symposium "Stochastic Vibrations and Fatigue: Theory and Applications" (predavanje po pozivu), MI SASA Belgrade, Serbia, 2017.


    Marija Milošević, Backward Euler and forward-backward Euler methods for pantograph stochastic differential equations under nonlinear growth conditions, 14th Serbian mathematical congress, Kragujevac, Serbia, May 16-19, 2018.


    Maja Obradović, Marija Milošević, A class of neutral stochastic differential equations with time-dependent delay and Markovian switching and the Euler-Maruyama approximation, Kongres mladih matematičara u Novom Sadu 03 – 05. oktobar 2019, Novi Sad, Srbija.
  • Radovi na domaćim naučnim skupovima:

     

Poslednji put izmenjeno utorak, 27 april 2021 20:19